A. 6
B. 8
C. 4
D. 5
A
Đặt \(t = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} + 3 = \sin x + 3 \Rightarrow 2 \le t \le 4\).
Quan sát đồ thị hàm số \(y = f\left( t \right)\) trên đoạn \(\left[ {2;4} \right]\) thì \(\mathop {\max }\limits_{\left[ {2;4} \right]} f\left( t \right) = 5,\mathop {\min }\limits_{\left[ {2;4} \right]} f\left( t \right) = 1\) nên GTNN của \(g\left( x \right)\) là \(1\) đạt được tại \(t = 2\) hay \(\sin x = - 1 \Leftrightarrow x = - \dfrac{\pi }{2} + k2\pi \) và GTLN của \(g\left( x \right)\) đạt được bằng \(5\) đạt được tại \(t = 4\) hay \(\sin x = 1 \Leftrightarrow x = \dfrac{\pi }{2} + k2\pi \).
Vậy tổng là \(1 + 5 = 6\).
Chọn A.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247