Trong không gian \(Oxyz\) cho hai mặt phẳng \(\left( \alpha \right):\,\,3x - 2y + 2z + 7 = 0\) và \(\left( \beta \right):\,\,5x - 4y + 3z + 1 = 0.\) Phương trình mặt phẳng qua \(...

Câu hỏi :

Trong không gian \(Oxyz\) cho hai mặt phẳng \(\left( \alpha  \right):\,\,3x - 2y + 2z + 7 = 0\) và \(\left( \beta  \right):\,\,5x - 4y + 3z + 1 = 0.\) Phương trình mặt phẳng qua \(O,\) đồng thời vuông góc với cả \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) có phương trình là: 

A. \(2x - y + 2z = 0\)        

B. \(2x + y - 2z + 1 = 0\)       

C. \(2x + y - 2z = 0\)    

D. \(2x - y - 2z = 0\)  

* Đáp án

C

* Hướng dẫn giải

Ta có:\(\overrightarrow {{n_\alpha }}  = \left( {3; - 2;\,2} \right),\,\overrightarrow {{n_\beta }}  = \left( {5; - 4;\,3} \right)\) lần lượt là VTPT của \(\left( \alpha  \right),\,\,\left( \beta  \right)\).

Gọi mặt phẳng cần tìm là mặt phẳng \(\left( P \right)\) có VTPT \(\overrightarrow {{n_P}} .\)

Ta có: \(\left\{ \begin{array}{l}\left( P \right) \bot \left( \alpha  \right)\\\left( P \right) \bot \left( \beta  \right)\end{array} \right. \Rightarrow \overrightarrow {{n_P}}  = \left[ {\overrightarrow {{n_\alpha }} ,\,\overrightarrow {{n_\beta }} } \right] = \left( {2;\,1; - 2} \right).\)

\( \Rightarrow \) Phương trình \(\left( P \right):\,\,2\left( {x - 0} \right) + y - 0 - 2\left( {z - 0} \right) = 0 \Leftrightarrow 2x + y - 2z = 0.\) 

Chọn C.

Copyright © 2021 HOCTAP247