A. \(2x - y + 2z = 0\)
B. \(2x + y - 2z + 1 = 0\)
C. \(2x + y - 2z = 0\)
D. \(2x - y - 2z = 0\)
A. 1
B. 3
C. 0
D. 2
A. 11
B. 4
C. 23
D. 242
A. \(4x + 3y - 12z - 78 = 0\)
B. \(4x + 3y - 12z - 26 = 0\)
C. \(4x + 3y - 12z + 78 = 0\)
D. \(4x + 3y - 12z + 26 = 0\)
A. \(C_{10}^4{.5^6}{.3^4}\)
B. \( - C_{10}^6{.5^4}{.3^6}\)
C. \( - C_{10}^4{.5^6}{.3^4}\)
D. \(C_{10}^6{.5^4}{.3^6}\)
A. \(10i\)
B. \( - 10i\)
C. \(11 + 8i\)
D. \(11 - 10i\)
A. \( - \dfrac{5}{2}\)
B. \( - \dfrac{2}{3}\)
C. \(5\)
D. \(\dfrac{3}{2}\)
A. \(y = {x^4} - 2{x^2} - 5\)
B. \(y = - {x^4} + 2{x^2} - 5\)
C. \(y = {x^4} + 2{x^2} - 5\)
D. \(y = {x^4} + 2{x^2} + 1\)
A. \(5cm\)
B. \(3cm\)
C. \(4cm\)
D. \(6cm\)
A. \(3\left( {\log a + \dfrac{1}{2}\log b} \right)\)
B. \(2\log a + 3\log b\)
C. \(3\log a + \dfrac{1}{2}\log b\)
D. \(3\log a + 2\log b\)
A. \(f'\left( x \right) = \dfrac{{\ln 3}}{{{x^2} - 4x}}\)
B. \(f'\left( x \right) = \dfrac{1}{{\left( {{x^2} - 4x} \right)\ln 3}}\)
C. \(f'\left( x \right) = \dfrac{{\left( {2x - 4} \right)\ln 3}}{{{x^2} - 4x}}\)
D. \(f'\left( x \right) = \dfrac{{2x - 4}}{{\left( {{x^2} - 4x} \right)\ln 3}}\)
A. \(-4\)
B. \(3\)
C. \(0\)
D. \(-1\)
A. \(\left( {4;\,5;\,3} \right)\)
B. \(\left( {2;\,3;\,3} \right)\)
C. \(\left( { - 2; - 3;\,3} \right)\)
D. \(\left( {2; - 3; - 3} \right)\)
A. \(\dfrac{{{a^3}}}{3}\)
B. \(\dfrac{{{a^3}}}{6}\)
C. \({a^3}\)
D. \(\dfrac{{{a^3}}}{2}\)
A. 1
B. 3
C. 4
D. 2
A. 2
B. 1
C. 4
D. 3
A. \(y = {x^3} - 3x + 1\)
B. \(y = {x^4} - {x^2} + 1\)
C. \(y = \dfrac{{2x + 1}}{{x + 1}}\)
D. \(y = \dfrac{{2x - 1}}{{x - 1}}\)
A. \(2\pi {a^2}\sin \alpha \)
B. \(\pi {a^2}\sin \alpha \)
C. \(2\pi {a^2}\cos \alpha \)
D. \(\pi {a^2}\cos \alpha \)
A. \(8\sqrt 6 \pi {a^3}\)
B. \(6\sqrt 6 \pi {a^3}\)
C. \(4\sqrt 3 \pi {a^3}\)
D. \(\dfrac{{4\sqrt 6 }}{3}\pi {a^3}\)
A. \({\left( {x - 3} \right)^2} + {\left( {y - 3} \right)^2} = 9\)
B. \({\left( {x - 3} \right)^2} + {\left( {y + 3} \right)^2} = 9\)
C. \({\left( {x - 3} \right)^2} - {\left( {y - 3} \right)^2} = 9\)
D. \({\left( {x + 3} \right)^2} + {\left( {y + 3} \right)^2} = 9\)
A. \({P_{\min }} = 28\)
B. \({P_{\min }} = 3\)
C. \({P_{\min }} = 4\)
D. \({P_{\min }} = 16\)
A. \({\left( {x + 2} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z + 4} \right)^2} = 3\)
B. \({\left( {x + 2} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z + 4} \right)^2} = 9\)
C. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 4} \right)^2} = 45\)
D. \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 4} \right)^2} = 3\)
A. \(\dfrac{{3a}}{4}\)
B. \(\dfrac{{4a}}{3}\)
C. \(\dfrac{3}{{4a}}\)
D. \(\dfrac{4}{{3a}}\)
A. \(\left( { - 1;0} \right)\)
B. \(\left( {1; + \infty } \right)\)
C. \(\left( {0;1} \right)\)
D. \(\left( { - 1;1} \right)\)
A. \(\dfrac{2}{3}a\)
B. \(\dfrac{{\sqrt 3 }}{2}a\)
C. \(\dfrac{{2\sqrt 5 }}{5}a\)
D. \(\dfrac{1}{3}a\)
A. \(\dfrac{7}{{\sqrt {14} }}\)
B. \(\dfrac{8}{{\sqrt {14} }}\)
C. \(14\)
D. \(\dfrac{5}{{\sqrt {14} }}\)
A. \(12\)
B. \(9\)
C. \(6\)
D. \( - 6\)
A. \(m \le f\left( 0 \right) + 1\)
B. \(m > f\left( 0 \right) - 1\)
C. \(m < f\left( 0 \right) + 1\)
D. \(m \ge f\left( 0 \right) + 1\)
A. \({90^0}\)
B. \({60^0}\)
C. \({30^0}\)
D. \({45^0}\)
A. \(\dfrac{2}{3}\)
B. \(0\)
C. \(1 - 3m\)
D. \(3 - m\)
A. \(\dfrac{V}{9}\)
B. \(\dfrac{V}{3}\)
C. \(\dfrac{{2V}}{9}\)
D. \(\dfrac{V}{{27}}\)
A. 6
B. 5
C. 7
D. 4
A. \(15,7cm\)
B. \(17,2cm\)
C. \(18,1cm\)
D. \(17,5cm\)
A. \({V_1} = \dfrac{4}{9}{V_2}\)
B. \({V_1} = \dfrac{3}{2}{V_2}\)
C. \({V_1} = 3{V_2}\)
D. \({V_1} = \dfrac{9}{4}{V_2}\)
A. \(42\)
B. \(14\)
C. \(14\sqrt 3 \)
D. \(\dfrac{{14}}{{\sqrt 3 }}\)
A. 6
B. 8
C. 9
D. 7
A. \(I \approx 6,55\)
B. \(I \approx 17,30\)
C. \(I \approx 10,31\)
D. \(I \approx 16,91\)
A. 2
B. 3
C. 1
D. 0
A. \(CD \bot \left( {ABD} \right)\).
B. \(AC \bot BC\).
C. \(BC \bot AD\).
D. \(AB \bot \left( {ABC} \right)\).
A. \({a^{\frac{5}{6}}}\).
B. \({a^{\frac{6}{5}}}\).
C. \({a^{\frac{7}{6}}}\).
D. \({a^{\frac{{11}}{6}}}\).
A. \(x - y + 2z - 5 = 0\).
B. \(x + y + z - 3 = 0\).
C. \(x - 3y + 3z - 15 = 0\).
D. \(3x + 3y - z = 0\).
A. \(\sqrt {{R^2} + {d^2}} \).
B. \(\sqrt {{R^2} - 2{d^2}} \).
C. \(\sqrt {{R^2} - {d^2}} \).
D. \(\sqrt {Rd} \).
A. \(y = \dfrac{{x - 1}}{{1 - 2x}}\).
B. \(y = \dfrac{{x + 1}}{{2x - 1}}\).
C. \(y = \dfrac{{x - 1}}{{2x + 1}}\).
D. \(y = \dfrac{{x - 1}}{{2x - 1}}\).
A. 2
B. 1
C. -3
D. -7
A. 1014m.
B. 1200m.
C. 36m.
D. 966m.
A. \({\left( {x + 2} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = 27\).
B. \({\left( {x - 2} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = 3\sqrt 3 \).
C. \({\left( {x + 2} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = 3\sqrt 3 \).
D. \({\left( {x - 2} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = 27\).
A. \(\left( {1; - 1} \right)\).
B. \(\left( {1;3} \right)\).
C. \(\left( { - 1;3} \right)\).
D. \(\left( { - 1;1} \right)\).
A. \(924\).
B. \(\dfrac{1}{{81}}\).
C. \(40095\).
D. \(\dfrac{{55}}{9}\).
A. \(V = \dfrac{{{a^3}\sqrt 6 }}{4}\).
B. \(V = {a^3}\sqrt 6 \).
C. \(V = \dfrac{{{a^3}\sqrt 6 }}{2}\).
D. \(V = \dfrac{{{a^3}\sqrt 6 }}{{12}}\).
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247