A. \(4x + 3y - 12z - 78 = 0\)
B. \(4x + 3y - 12z - 26 = 0\)
C. \(4x + 3y - 12z + 78 = 0\)
D. \(4x + 3y - 12z + 26 = 0\)
C
Ta có: \(\overrightarrow {{n_\alpha }} = \left( {4;\,3; - 12} \right).\)
Vì \(\left( \alpha \right)//\left( \beta \right) \Rightarrow \left( \beta \right)\) nhận \(\overrightarrow {{n_\alpha }} = \left( {4;\,3; - 12} \right)\) làm VTPT.
\( \Rightarrow \left( \beta \right):\,\,4x + 3y - 12z + d = 0.\,\,\,\left( {d \ne 10} \right)\)
Ta có: \(\left( S \right)\) có tâm \(I\left( {1;\,2;\,3} \right)\) và bán kính \(R = \sqrt {1 + {2^2} + {3^2} + 2} = 4.\)
Mặt phẳng \(\left( \beta \right)\) tiếp xúc với mặt cầu \(\left( S \right) \Rightarrow d\left( {I;\,\left( \beta \right)} \right) = R\)
\(\begin{array}{l} \Leftrightarrow \dfrac{{\left| {4.1 + 3.2 - 12.3 + d} \right|}}{{\sqrt {{4^2} + {3^2} + {{12}^2}} }} = 4\\ \Leftrightarrow \left| {d - 26} \right| = 52 \Leftrightarrow \left[ \begin{array}{l}d - 26 = 52\\d - 26 = - 52\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}d = 78\\d = - 26\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}\left( {{\beta _1}} \right):\,\,4x + 3y - 12z + 78 = 0\\\left( {{\beta _2}} \right):\,\,4x + 3y - 12z - 26 = 0\end{array} \right.\end{array}\)
Gọi \(M\left( {0;\,0;\,{z_0}} \right)\,\,\,\left( {{z_0} > 0} \right)\) là giao điểm của \(Oz\) và các mặt phẳng \(\left( {{\beta _1}} \right),\,\,\left( {{\beta _2}} \right).\)
\( \Rightarrow \left[ \begin{array}{l}M \in \left( {{\beta _1}} \right) \Rightarrow - 12{z_0} + 78 = 0 \Leftrightarrow {z_0} = \dfrac{{13}}{2}\,\,\left( {tm} \right)\\M \in \left( {{\beta _2}} \right) \Rightarrow - 12{z_0} - 26 = 0 \Leftrightarrow {z_0} = - \dfrac{{13}}{6}\,\,\left( {ktm} \right)\end{array} \right.\)
Chọn C.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247