Hệ số \({x^6}\) khi khai triển đa thức \(P\left( x \right) = {\left( {5 - 3x} \right)^{10}}\) có giá trị bằng đại lượng nào sau đây?

Câu hỏi :

Hệ số \({x^6}\) khi khai triển đa thức \(P\left( x \right) = {\left( {5 - 3x} \right)^{10}}\) có giá trị bằng đại lượng nào sau đây? 

A. \(C_{10}^4{.5^6}{.3^4}\)  

B. \( - C_{10}^6{.5^4}{.3^6}\) 

C. \( - C_{10}^4{.5^6}{.3^4}\) 

D. \(C_{10}^6{.5^4}{.3^6}\) 

* Đáp án

D

* Hướng dẫn giải

Ta có: \(P\left( x \right) = {\left( {5 - 3x} \right)^{10}} = \sum\limits_{k = 0}^{10} {C_{10}^k{5^{10 - k}}{{\left( { - 3x} \right)}^k}}  = \sum\limits_{k = 0}^{10} {C_{10}^k{5^{10 - k}}{{\left( { - 3} \right)}^k}.{x^k}.} \)

Để có hệ số của \({x^6}\) thì: \(k = 6 \Rightarrow \) hệ số của \({x^6}:\,\,C_{10}^6{.5^4}.{\left( { - 3} \right)^6} = C_{10}^6{.5^4}{.3^6}.\)

Chọn D.

Copyright © 2021 HOCTAP247