A. \(\dfrac{V}{9}\)
B. \(\dfrac{V}{3}\)
C. \(\dfrac{{2V}}{9}\)
D. \(\dfrac{V}{{27}}\)
D
Ta có: \(\dfrac{{AM}}{{AE}} = \dfrac{{AP}}{{AG}} = \dfrac{{AN}}{{AF}} = \dfrac{2}{3} \Rightarrow MP//EG,\,\,MN//EF\)
\( \Rightarrow \left( {MNP} \right)//\left( {BCD} \right)\).
Ta có \(\dfrac{{MN}}{{EG}} = \dfrac{2}{3} \Rightarrow \dfrac{{MN}}{{BD}} = \dfrac{1}{3}\)
Ta có \(\Delta MNP\) đồng dạng với \(\Delta BCD\) theo tỉ số \(\dfrac{1}{3} \Rightarrow \dfrac{{{S_{\Delta MNP}}}}{{{S_{\Delta BCD}}}} = \dfrac{1}{9}\).
Dựng \(B'C'\) qua M và song song \(BC\). \(C'D'\) qua P và song song với \(CD\).
\( \Rightarrow \left( {MNP} \right) \equiv \left( {B'C'D'} \right)\).
Trong \(\left( {ABG} \right)\) gọi \(I = AQ \cap B'P\). Ta có \(\dfrac{{AB'}}{{AB}} = \dfrac{{AI}}{{AQ}} = \dfrac{{AP}}{{AG}} = \dfrac{2}{3}\).
\(\begin{array}{l}\dfrac{{d\left( {Q;\left( {MNP} \right)} \right)}}{{d\left( {A;\left( {MNP} \right)} \right)}} = \dfrac{{QI}}{{AI}} = \dfrac{1}{2};\,\,\dfrac{{d\left( {A;\left( {MNP} \right)} \right)}}{{d\left( {A;\left( {BCD} \right)} \right)}} = \dfrac{{AB'}}{{AB}} = \dfrac{2}{3}\\ \Rightarrow \dfrac{{d\left( {Q;\left( {MNP} \right)} \right)}}{{d\left( {A;\left( {BCD} \right)} \right)}} = \dfrac{1}{2}.\dfrac{2}{3} = \dfrac{1}{3}\end{array}\)
Vậy \(\dfrac{{{V_{MNPQ}}}}{{{V_{ABCD}}}} = \dfrac{1}{3}.\dfrac{1}{9} = \dfrac{1}{{27}} \Rightarrow {V_{MNPQ}} = \dfrac{V}{{27}}\).
Chọn D.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247