Trong hệ tọa độ \(Oxyz\), cho đường thẳng \(d:\dfrac{{x - 1}}{2} = \dfrac{{y - 3}}{{ - 1}} = \dfrac{{z - 1}}{1}\) cắt mặt phẳng \(\left( P \right):2x - 3y + z - 2 = 0\) tại điểm \(...

Câu hỏi :

Trong hệ tọa độ \(Oxyz\), cho đường thẳng \(d:\dfrac{{x - 1}}{2} = \dfrac{{y - 3}}{{ - 1}} = \dfrac{{z - 1}}{1}\) cắt mặt phẳng \(\left( P \right):2x - 3y + z - 2 = 0\) tại điểm \(I\left( {a;b;c} \right)\). Khi đó \(a + b + c\) bằng 

A. \(9\)  

B. \(5\) 

C. \(3\) 

D. \(7\)  

* Đáp án

D

* Hướng dẫn giải

Ta có: \(d:\dfrac{{x - 1}}{2} = \dfrac{{y - 3}}{{ - 1}} = \dfrac{{z - 1}}{1}\)\( \Rightarrow d:\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 - t\\z = 1 + t\end{array} \right.\).

Gọi \(I = d \cap \left( P \right)\) \( \Rightarrow I \in d \Rightarrow I\left( {1 + 2t;3 - t;1 + t} \right)\).

\(I \in \left( P \right) \Leftrightarrow 2\left( {1 + 2t} \right) - 3\left( {3 - t} \right) + \left( {1 + t} \right) - 2 = 0\)

\( \Leftrightarrow 2 + 4t - 9 + 3t + 1 + t - 2 = 0 \Leftrightarrow 8t - 8 = 0 \Leftrightarrow t = 1 \Rightarrow I\left( {3;2;2} \right)\)

Hay \(a = 3;b = 2,c = 2 \Rightarrow a + b + c = 7\).

Chọn D.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Nguyễn Du

Số câu hỏi: 50

Copyright © 2021 HOCTAP247