Cho dãy số \(\left( {{u_n}} \right)\) là một cấp số cộng, biết \({u_2} + {u_{21}} = 50.\) Tính tổng của \(22\) số hạng đầu tiên của dãy.

Câu hỏi :

Cho dãy số \(\left( {{u_n}} \right)\) là một cấp số cộng, biết \({u_2} + {u_{21}} = 50.\) Tính tổng của \(22\) số hạng đầu tiên của dãy. 

A. \(2018\) 

B. \(550\)  

C. \(1100\) 

D. \(50\) 

* Đáp án

B

* Hướng dẫn giải

Gọi cấp số cộng có công sai \(d\) và số hạng đầu \({u_1}.\)

Khi đó \({u_2} = {u_1} + d;{u_{21}} = {u_1} + 20d\)  nên \({u_2} + {u_{21}} = 50 \Leftrightarrow {u_1} + d + {u_1} + 20d = 50 \Leftrightarrow 2{u_1} + 21d = 50\)

Tổng \(22\) số hạng đầu tiên của dãy là

\({S_{22}} = \dfrac{{\left( {{u_1} + {u_{22}}} \right).22}}{2} = \dfrac{{\left( {{u_1} + {u_1} + 21d} \right)22}}{2} = \dfrac{{\left( {2{u_1} + 21d} \right).22}}{2} = \dfrac{{50.22}}{2} = 550\)

Chọn B.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Nguyễn Du

Số câu hỏi: 50

Copyright © 2021 HOCTAP247