Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a,\) tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy. Tính theo \(a\) thể tích khối chóp \(S.ABC\)

Câu hỏi :

Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a,\) tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy. Tính theo \(a\) thể tích khối chóp \(S.ABC\)  

A. \(V = \dfrac{{{a^3}}}{8}\) 

B. \(V = \dfrac{{{a^3}\sqrt 3 }}{3}\) 

C. \(V = \dfrac{{{a^3}\sqrt 3 }}{4}\) 

D. \(V = \dfrac{{{a^3}}}{4}\) 

* Đáp án

A

* Hướng dẫn giải

Gọi \(H\) là trung điểm \(AB \Rightarrow SH \bot AB\) (vì tam giác \(SAB\) đều)

Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABC} \right)\\\left( {SAB} \right) \cap \left( {ABC} \right) = AB\\SH \bot AB;SH \subset \left( {SAB} \right)\end{array} \right. \Rightarrow SH \bot \left( {ABC} \right)\)

Tam giác \(ABC\) đều cạnh \(a\) nên \(AB = a \Rightarrow \) tam giác \(SAB\) cũng là tam giác đều cạnh \(a.\)

Vì \(SH\) là đường trung tuyến trong tam giác \(SAB\) đều cạnh \(a\) nên \(SH = \dfrac{{a\sqrt 3 }}{2}\)

Diện tích đáy \({S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)

Thể tích khối chóp \(V = \dfrac{1}{3}SH.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{a\sqrt 3 }}{2}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}}}{8}\)

Chọn  A.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Nguyễn Du

Số câu hỏi: 50

Copyright © 2021 HOCTAP247