A. \(V = \dfrac{{{a^3}}}{8}\)
B. \(V = \dfrac{{{a^3}\sqrt 3 }}{3}\)
C. \(V = \dfrac{{{a^3}\sqrt 3 }}{4}\)
D. \(V = \dfrac{{{a^3}}}{4}\)
A
Gọi \(H\) là trung điểm \(AB \Rightarrow SH \bot AB\) (vì tam giác \(SAB\) đều)
Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABC} \right)\\\left( {SAB} \right) \cap \left( {ABC} \right) = AB\\SH \bot AB;SH \subset \left( {SAB} \right)\end{array} \right. \Rightarrow SH \bot \left( {ABC} \right)\)
Tam giác \(ABC\) đều cạnh \(a\) nên \(AB = a \Rightarrow \) tam giác \(SAB\) cũng là tam giác đều cạnh \(a.\)
Vì \(SH\) là đường trung tuyến trong tam giác \(SAB\) đều cạnh \(a\) nên \(SH = \dfrac{{a\sqrt 3 }}{2}\)
Diện tích đáy \({S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)
Thể tích khối chóp \(V = \dfrac{1}{3}SH.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{a\sqrt 3 }}{2}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}}}{8}\)
Chọn A.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247