Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có đáy làm tam giác đều cạnh \(a,AA' = 2a\). Gọi \(\alpha \) là góc giữa \(AB'\) và \(BC'\). Tính \(\cos \alpha \).

Câu hỏi :

Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có đáy làm tam giác đều cạnh \(a,AA' = 2a\). Gọi \(\alpha \) là góc giữa \(AB'\) và \(BC'\). Tính \(\cos \alpha \). 

A. \(\cos \alpha  = \dfrac{5}{8}\) 

B. \(\cos \alpha  = \dfrac{{\sqrt {51} }}{{10}}\) 

C. \(\cos \alpha  = \dfrac{{\sqrt {39} }}{8}\) 

D. \(\cos \alpha  = \dfrac{7}{{10}}\) 

* Đáp án

D

* Hướng dẫn giải

Gọi \(M,N,P\) lần lượt là trung điểm của \(AB,BB',B'C'\).

Ta có: \(MN//AB'\) và \(NP//BC'\) (đường trung bình trong tam giác)

Do đó góc giữa hai đường thẳng \(AB'\) và \(BC'\) bằng góc giữa hai đường thẳng \(MN\) và \(NP\).

Gọi \(Q\) là trung điểm của \(A'B'\) thì \(MQ \bot \left( {A'B'C'} \right) \Rightarrow MQ \bot QP\).

Tam giác \(MQP\) có \(MQ = AA' = 2a,\,\,QP = \dfrac{1}{2}A'C' = \dfrac{a}{2}\) \( \Rightarrow MP = \sqrt {M{Q^2} + Q{P^2}}  = \sqrt {4{a^2} + \dfrac{{{a^2}}}{4}}  = \dfrac{{a\sqrt {17} }}{2}\)

Lại có \(MN = \dfrac{1}{2}AB' = \dfrac{1}{2}\sqrt {A{B^2} + BB{'^2}}  = \dfrac{1}{2}\sqrt {{a^2} + 4{a^2}}  = \dfrac{{a\sqrt 5 }}{2}\); \(NP = \dfrac{1}{2}BC' = \dfrac{1}{2}\sqrt {BB{'^2} + B'C{'^2}}  = \dfrac{1}{2}\sqrt {4{a^2} + {a^2}}  = \dfrac{{a\sqrt 5 }}{2}\)

Áp dụng định lý hàm số cô sin trong tam giác \(MNP\) ta có:

\(\cos \widehat {MNP} = \dfrac{{M{N^2} + N{P^2} - M{P^2}}}{{2MN.NP}} = \dfrac{{\dfrac{{5{a^2}}}{4} + \dfrac{{5{a^2}}}{4} - \dfrac{{17{a^2}}}{4}}}{{2.\dfrac{{a\sqrt 5 }}{2}.\dfrac{{a\sqrt 5 }}{2}}} =  - \dfrac{7}{{10}} < 0\)

Do đó góc giữa hai đường thẳng \(MN\) và \(NP\) thỏa mãn \(\cos \widehat {\left( {MN,MP} \right)} = \dfrac{7}{{10}}\).

Chọn D.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Nguyễn Du

Số câu hỏi: 50

Copyright © 2021 HOCTAP247