A. \(\dfrac{{a\sqrt 3 }}{6}\)
B. \(\dfrac{{a\sqrt 3 }}{2}\)
C. \(\dfrac{{a\sqrt 3 }}{3}\)
D. \(\dfrac{{a\sqrt 3 }}{4}\)
B
Gọi \(H\) là trung điểm của \(AB\) suy ra \(SH \bot \left( {ABCD} \right)\).
Ta thấy: \(BC//AD \subset \left( {SAD} \right) \Rightarrow BC//\left( {SAD} \right)\) \( \Rightarrow d\left( {C,\left( {SAD} \right)} \right) = d\left( {B,\left( {SAD} \right)} \right) = 2d\left( {H,\left( {SAD} \right)} \right)\)
(vì \(H\) là trung điểm của \(AB\)).
Gọi \(K\) là hình chiếu của \(H\) lên \(SA\) \( \Rightarrow HK \bot SA\).
Lại có \(\left\{ \begin{array}{l}AD \bot AB\\AD \bot SH\end{array} \right. \Rightarrow AD \bot \left( {SAB} \right) \Rightarrow AD \bot HK\).
Từ hai điều trên suy ra \(HK \bot \left( {SAD} \right) \Rightarrow d\left( {H,\left( {SAD} \right)} \right) = HK\).
Tam giác \(SAB\) đều cạnh \(a\) nên \(SH = \dfrac{{a\sqrt 3 }}{2},HA = \dfrac{a}{2}\)\( \Rightarrow HK = \dfrac{{HA.HS}}{{SA}} = \dfrac{{\dfrac{a}{2}.\dfrac{{a\sqrt 3 }}{2}}}{a} = \dfrac{{a\sqrt 3 }}{4}\)
\( \Rightarrow d\left( {C,\left( {SAD} \right)} \right) = 2d\left( {H,\left( {SAD} \right)} \right) = 2.\dfrac{{a\sqrt 3 }}{4} = \dfrac{{a\sqrt 3 }}{2}\).
Chọn B.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247