Có tất cả bao nhiêu giá trị thực của tham số \(m\) để đường thẳng \(d:y = mx + 1\) cắt đồ thị \(\left( C \right):{x^3} - {x^2} + 1\) tại ba điểm \(A;B\left( {0;1} \right);C\) phân...

Câu hỏi :

Có tất cả bao nhiêu giá trị thực của tham số \(m\) để đường thẳng \(d:y = mx + 1\) cắt đồ thị \(\left( C \right):{x^3} - {x^2} + 1\) tại ba điểm \(A;B\left( {0;1} \right);C\) phân biệt sao cho tam giác \(AOC\) vuông tại \(O\left( {0;0} \right)\)? 

A. 0

B. 1

C. 3

D. 2

* Đáp án

B

* Hướng dẫn giải

Xét phương trình hoành độ giao điểm của đường thẳng \(d\) và đồ thị \(\left( C \right)\) :

\({x^3} - {x^2} + 1 = mx + 1 \Leftrightarrow {x^3} - {x^2} - mx = 1 \Leftrightarrow x\left( {{x^2} - x - m} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - x - m = 0\left( * \right)\end{array} \right.\)

Để \(d\) cắt đồ thị \(\left( C \right)\) tại ba điểm phân biệt thì phương trình \(\left( * \right)\) có hai nghiệm phân biệt khác \(0\)

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta  = 1 + 4m > 0\\{0^2} - 0 - m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >  - \dfrac{1}{4}\\m \ne 0\end{array} \right.\)

Với \(x = 0 \Rightarrow y = 1 \Rightarrow B\left( {0;1} \right)\)

Gọi \({x_1};{x_2}\) là hai nghiệm của phương trình \(\left( * \right)\) thì \(A\left( {{x_1};m{x_1} + 1} \right);C\left( {{x_2};m{x_2} + 2} \right)\) và \(\left\{ \begin{array}{l}{x_1} + {x_2} = 1\\{x_1}.{x_2} =  - m\end{array} \right.\)

Để tam giác \(AOC\) vuông tại \(O\) thì \(\overrightarrow {OA}  \bot \overrightarrow {OC}  \Leftrightarrow \overrightarrow {OA} .\overrightarrow {OC}  = 0\)

\(\begin{array}{l} \Leftrightarrow {x_1}.{x_2} + \left( {m{x_1} + 1} \right)\left( {m{x_2} + 1} \right) = 0\\ \Leftrightarrow {x_1}{x_2} + {m^2}{x_1}{x_2} + m\left( {{x_1} + {x_2}} \right) + 1 = 0\\ \Leftrightarrow  - m - {m^2}.m + m.1 + 1 = 0 \Leftrightarrow  - {m^3} + 1 = 0 \Leftrightarrow m = 1\end{array}\)

Vậy có 1 giá trị của \(m\) thỏa mãn điều kiện đề bài.

Chọn B.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Nguyễn Du

Số câu hỏi: 50

Copyright © 2021 HOCTAP247