Cho \(f\left( x \right)\) mà hàm số \(y = f'\left( x \right)\) có bảng biến thiên như hình bên. Tất cả các giá trị của tham số \(m\) để bất phương trình \(m + {x^2}...

Câu hỏi :

Cho \(f\left( x \right)\) mà hàm số \(y = f'\left( x \right)\) có bảng biến thiên như hình bên. Tất cả các giá trị của tham số \(m\) để bất phương trình \(m + {x^2} < f\left( x \right) + \frac{1}{3}{x^3}\) nghiệm đúng với mọi \(x \in \left( {0;3} \right)\) là

A. \(m < f\left( 0 \right)\)

B. \(m \le f\left( 0 \right)\)

C. \(m \le f\left( 3 \right)\) 

D. \(m < f\left( 1 \right) - \frac{2}{3}\) 

* Đáp án

B

* Hướng dẫn giải

\(m + {x^2} < f\left( x \right) + \frac{1}{3}{x^3}\) nghiệm đúng \(\forall x \in \left( {0;3} \right)\)

\( \Leftrightarrow g\left( x \right) = f\left( x \right) + \frac{1}{3}{x^3} - {x^2} > m\) nghiệm đúng  \(\forall x \in \left( {0;3} \right) \Rightarrow m \le \mathop {\min }\limits_{\left[ {0;3} \right]} g\left( x \right)\).

Ta có \(g'\left( x \right) = f'\left( x \right) + {x^2} - 2x\).

Dựa vào BBT ta thấy :

\(1 < f'\left( x \right) \le 3\,\,\forall x \in \left( {0;3} \right)\) và \(\forall x \in \left( {0;3} \right) \Rightarrow  - 1 \le {x^2} - 2x \le 3\)

\( \Rightarrow g'\left( x \right) \ge 0\,\,\forall x \in \left( {0;3} \right) \Rightarrow \) Hàm số đồng biến trên \(\left( {0;3} \right)\).

\( \Rightarrow \mathop {\min }\limits_{\left[ {0;3} \right]} g\left( x \right) = g\left( 0 \right) = f\left( 0 \right) \Leftrightarrow m \le f\left( 0 \right)\)

Chọn B.

Copyright © 2021 HOCTAP247