Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình bên. Có bao nhiêu số nguyên \(m\) để phương trình \(\frac{1}{3}f\left( {\frac{x}{2} + 1} \right) + x = m\) có nghiệm thuộc đ...

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình bên. Có bao nhiêu số nguyên \(m\) để phương trình \(\frac{1}{3}f\left( {\frac{x}{2} + 1} \right) + x = m\) có nghiệm thuộc đoạn \(\left[ { - 2;\,2} \right]?\)

A. \(11\) 

B. \(9\)

C. \(7\)

D. \(10\)

* Đáp án

C

* Hướng dẫn giải

Đặt \(t = \frac{x}{2} + 1,\,\,x \in \left[ { - 2;2} \right] \Rightarrow t \in \left[ {0;2} \right]\) và \(x = 2\left( {t - 1} \right)\).

Khi đó ta có \(\frac{1}{3}f\left( t \right) + 2\left( {t - 1} \right) = m,\,\,t \in \left[ {0;2} \right] \Leftrightarrow f\left( t \right) = 3m - 6\left( {t - 1} \right) =  - 6t + 3m + 6\,\,\left( * \right)\).

Số nghiệm của (*) là số giao điểm của đồ thị hàm số \(y = f\left( t \right)\) và đường thẳng \(\left( d \right):\,\,y =  - 6t + 3m + 6\)

Vẽ đồ thị hàm số \(y = f\left( t \right)\) và \(y =  - 6t\) trên cùng 1 mặt phẳng tọa độ ta có :

Gọi \({d_1}\) là đường thẳng đi qua \(\left( {0; - 4} \right)\) và song song với đường thẳng \(y =  - 6t \Rightarrow \left( {{d_1}} \right):\,\,y =  - 6t - 4\)

Gọi \({d_1}\) là đường thẳng đi qua \(\left( {2;5} \right)\) và song song với đường thẳng \(y =  - 6t \Rightarrow \left( {{d_2}} \right):\,\,y =  - 6t + 17\).

Để phương trình (*) có nghiệm \(t \in \left[ {0;2} \right] \Rightarrow \) Đường thẳng \(\left( d \right):\,\,y =  - 6t + 3m + 6\) nằm giữa hai đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) \( \Rightarrow  - 4 \le 3m + 6 \le 17 \Leftrightarrow  - \frac{{10}}{3} \le m \le \frac{{11}}{3}\).

Kết hợp điều kiện \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 3; - 2; - 1;0;1;2;3} \right\}\).

Vậy có 7 giá trị của \(m\) thỏa mãn yêu cầu bài toán.

Chọn C

Copyright © 2021 HOCTAP247