A. \(\tan \alpha = \frac{1}{{\sqrt 2 }}\).
B. \(\tan \alpha = \frac{1}{2}\).
C. \(\tan \alpha = 1\).
D. \(\tan \alpha = \sqrt 2 \).
A
Lấy điểm \(A' \in \left( {O'} \right),\,\,B' \in \left( O \right)\) sao cho \(AA',\,\,BB'\) song song với trục \(OO'\).
Khi đó ta có lăng trụ đứng \(OAB'.O'A'B\).
Ta có:
\(\begin{array}{l}{V_{OO'AB}} = {V_{OAB'.O'A'B}} - {V_{A.O'A'B}} - {V_{B.OAB'}}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = {V_{OAB'.O'A'B}} - \frac{1}{3}{V_{OAB'.O'A'B}} - \frac{1}{3}{V_{OAB'.O'A'B}} = \frac{1}{3}{V_{OAB'.O'A'B}}\\ \Rightarrow {V_{OO'AB}} = \frac{1}{3}.AA'.{S_{\Delta OAB'}} = \frac{1}{6}AA'.OA.OB.\sin \angle AOB'\\ = \frac{1}{6}.2a.2a.2a.\sin \angle AOB' = \frac{1}{6}.8{a^3}\sin \angle AOB' = \frac{{4{a^3}}}{3}\sin \angle AOB'\end{array}\)
Do đó để \({V_{OO'AB}}\) lớn nhất \( \Leftrightarrow \sin \angle AOB' = 1 \Leftrightarrow \angle AOB' = {90^0} \Leftrightarrow OA \bot OB'\).
\( \Rightarrow O'A' \bot O'B \Rightarrow \Delta O'A'B\) vuông tại \(O' \Rightarrow A'B = O'A'\sqrt 2 = 2a\sqrt 2 \).
Ta có
\(\begin{array}{l}AA' \bot \left( {O'A'B} \right) \Rightarrow \angle \left( {AB;\left( {O'A'B} \right)} \right) = \angle ABA' = \alpha \\ \Rightarrow tan\alpha = \frac{{AA'}}{{A'B}} = \frac{{2a}}{{2a\sqrt 2 }} = \frac{1}{{\sqrt 2 }}\end{array}\)
Chọn A.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247