Cho biết hình trụ có đáy là hai đường tròn tâm \(O\) và \(O\), bán kính đáy bằng chiều cao và bằng \(2a\).

Câu hỏi :

Cho hình trụ có đáy là hai đường tròn tâm \(O\) và \(O'\), bán kính đáy bằng chiều cao và bằng \(2a\). Trên đường tròn đáy có tâm \(O\) lấy điểm \(A\), trên đường tròn tâm \(O'\) lấy điểm \(B\). Đặt \(\alpha \) là góc giữa \(AB\) và đáy. Tính \(\tan \alpha \)  khi thể tích khối tứ diện \(OO'AB\) đạt giá trị lớn nhất. 

A. \(\tan \alpha  = \frac{1}{{\sqrt 2 }}\).

B. \(\tan \alpha  = \frac{1}{2}\). 

C. \(\tan \alpha  = 1\).   

D. \(\tan \alpha  = \sqrt 2 \). 

* Đáp án

A

* Hướng dẫn giải

Lấy điểm \(A' \in \left( {O'} \right),\,\,B' \in \left( O \right)\) sao cho \(AA',\,\,BB'\) song song với trục \(OO'\).

Khi đó ta có lăng trụ đứng \(OAB'.O'A'B\).

Ta có:

\(\begin{array}{l}{V_{OO'AB}} = {V_{OAB'.O'A'B}} - {V_{A.O'A'B}} - {V_{B.OAB'}}\\\,\,\,\,\,\,\,\,\,\,\,\,\, = {V_{OAB'.O'A'B}} - \frac{1}{3}{V_{OAB'.O'A'B}} - \frac{1}{3}{V_{OAB'.O'A'B}} = \frac{1}{3}{V_{OAB'.O'A'B}}\\ \Rightarrow {V_{OO'AB}} = \frac{1}{3}.AA'.{S_{\Delta OAB'}} = \frac{1}{6}AA'.OA.OB.\sin \angle AOB'\\ = \frac{1}{6}.2a.2a.2a.\sin \angle AOB' = \frac{1}{6}.8{a^3}\sin \angle AOB' = \frac{{4{a^3}}}{3}\sin \angle AOB'\end{array}\)  

Do đó để \({V_{OO'AB}}\) lớn nhất \( \Leftrightarrow \sin \angle AOB' = 1 \Leftrightarrow \angle AOB' = {90^0} \Leftrightarrow OA \bot OB'\).

\( \Rightarrow O'A' \bot O'B \Rightarrow \Delta O'A'B\) vuông tại \(O' \Rightarrow A'B = O'A'\sqrt 2  = 2a\sqrt 2 \).

Ta có

\(\begin{array}{l}AA' \bot \left( {O'A'B} \right) \Rightarrow \angle \left( {AB;\left( {O'A'B} \right)} \right) = \angle ABA' = \alpha \\ \Rightarrow tan\alpha  = \frac{{AA'}}{{A'B}} = \frac{{2a}}{{2a\sqrt 2 }} = \frac{1}{{\sqrt 2 }}\end{array}\)

Chọn A.

Copyright © 2021 HOCTAP247