Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại\(A\),\(AB = 1{\rm{cm}}\),\(AC = \sqrt 3 {\rm{cm}}\). Tam giác \(SAB\), \(SAC\) lần lượt vuông tại \(B\) và \(C\). Khối...

Câu hỏi :

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại\(A\),\(AB = 1{\rm{cm}}\),\(AC = \sqrt 3 {\rm{cm}}\). Tam giác \(SAB\), \(SAC\) lần lượt vuông tại \(B\) và \(C\). Khối cầu ngoại tiếp hình chóp \(S.ABC\) có thể tích bằng\(\frac{{5\sqrt 5 \pi }}{6}{\rm{c}}{{\rm{m}}^{\rm{3}}}\). Tính khoảng cách từ \(C\) tới \(\left( {SAB} \right)\) 

A. \(\frac{{\sqrt 3 }}{2}{\rm{cm}}\).

B. \(\frac{{\sqrt 5 }}{2}{\rm{cm}}\). 

C. \(\frac{{\sqrt 3 }}{4}{\rm{cm}}\).

D. \(\frac{{\sqrt 5 }}{4}{\rm{cm}}\).

* Đáp án

A

* Hướng dẫn giải

Gọi I là trung điểm của \(SA\).

Tam giác \(SAB,\,\,SAC\) vuông tại \(B,C \Rightarrow IS = IA = IB = IC \Rightarrow I\) là tâm mặt cầu ngoại tiếp chóp \(S.ABC\).

Gọi \(H\) là trung điểm của \(BC\). Vì \(\Delta ABC\) vuông tại \(A \Rightarrow H\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

\( \Rightarrow IH \bot \left( {ABC} \right)\).

Gọi \(R\) là bán kính mặt cầu ngoại tiếp chóp \(S.ABC\). Theo bài ra ta có: \(\dfrac{4}{3}\pi {R^3} = \dfrac{{5\sqrt 5 \pi }}{6} \Leftrightarrow {R^3} = \dfrac{{5\sqrt 5 }}{8} = \dfrac{{\sqrt {125} }}{8} \Leftrightarrow R = \dfrac{{\sqrt 5 }}{2}\)

\( \Rightarrow IS = IA = IB = IC = \dfrac{{\sqrt 5 }}{2}\).

Xét tam giác vuông \(ABC\) có: \(BC = \sqrt {A{B^2} + A{C^2}}  = 2 \Rightarrow AH = 1\).

Xét tam giác vuông \(IAH\) có \(IH = \sqrt {I{A^2} - A{H^2}}  = \sqrt {\dfrac{5}{4} - 1}  = \dfrac{1}{2}\).

\(\begin{array}{l}{S_{\Delta ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}.1.\sqrt 3  = \dfrac{{\sqrt 3 }}{2}\\ \Rightarrow {V_{I.ABC}} = \dfrac{1}{3}IH.{S_{\Delta ABC}} = \dfrac{1}{3}.\dfrac{1}{2}.\dfrac{{\sqrt 3 }}{2} = \dfrac{{\sqrt 3 }}{{12}}\end{array}\)

Ta có: \(SI \cap \left( {ABC} \right) = A \Rightarrow \dfrac{{d\left( {S;\left( {ABC} \right)} \right)}}{{d\left( {I;\left( {ABC} \right)} \right)}} = \dfrac{{SA}}{{IA}} = 2\)

\( \Rightarrow \dfrac{{{V_{S.ABC}}}}{{{V_{S.IBC}}}} = 2 \Rightarrow {V_{S.ABC}} = 2{V_{I.ABC}} = 2.\dfrac{{\sqrt 3 }}{{12}} = \dfrac{{\sqrt 3 }}{6}\).

Xét tam giác vuông \(SAB\) cps \(IB = \dfrac{{\sqrt 5 }}{2} \Rightarrow SA = 2IB = \sqrt 5  \Rightarrow SB = \sqrt {S{A^2} - A{B^2}}  = 2\).

\( \Rightarrow {S_{\Delta SAB}} = \dfrac{1}{2}.1.2 = 1\).

Ta có \({V_{S.ABC}} = \dfrac{1}{3}d\left( {C;\left( {SAB} \right)} \right).{S_{\Delta SAB}} \Rightarrow d\left( {C;\left( {SAB} \right)} \right) = \dfrac{{3{V_{S.ABC}}}}{{{S_{\Delta SAB}}}} = \dfrac{{3.\dfrac{{\sqrt 3 }}{6}}}{1} = \dfrac{{\sqrt 3 }}{2}\).

Chọn A. 

Copyright © 2021 HOCTAP247