Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = AD\sqrt 2 \), \(SA \bot \left( {ABC} \right)\). Gọi \(M\) là trung điểm của \(AB\). Góc giữa hai mặt phẳng \(\left...

Câu hỏi :

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = AD\sqrt 2 \), \(SA \bot \left( {ABC} \right)\). Gọi \(M\) là trung điểm của \(AB\). Góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SDM} \right)\) bằng 

A. \(45^\circ \).

B. \(90^\circ \).

C. \(60^\circ \).

D. \(30^\circ \).

* Đáp án

B

* Hướng dẫn giải

Gọi \(K\) là giao điểm của \(AC\) và \(DM\).

Ta có \(AM = MB = \dfrac{{AB}}{2} = \dfrac{{AD\sqrt 2 }}{2}\) và \(BC = AD\)

Xét tam giác vuông \(ADM\) có \(\tan \widehat {ADM} = \dfrac{{AM}}{{AD}} = \dfrac{{\dfrac{{AD\sqrt 2 }}{2}}}{{AD}} = \dfrac{{\sqrt 2 }}{2}\)  (1)

Xét tam giác vuông \(ABC\) có \(\tan \widehat {BAC} = \dfrac{{BC}}{{AB}} = \dfrac{{AD}}{{AD\sqrt 2 }} = \dfrac{{\sqrt 2 }}{2}\) (2)

Từ (1) và (2) suy ra \(\tan \widehat {ADM} = \tan \widehat {BAC} \Rightarrow \widehat {ADM} = \widehat {BAC}\) 

mà  \(\widehat {ADM} + \widehat {AMD} = 90^\circ  \Rightarrow \widehat {BAC} + \widehat {AMK} = 90^\circ  \Rightarrow \widehat {AKM} = 90^\circ \) hay \(DM \bot AC\)  (3)

Lại có \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot AC\) (4)

Từ (3) và (4) suy ra \(AC \bot \left( {SDM} \right) \Rightarrow \left( {SAC} \right) \bot \left( {SDM} \right)\) nên góc giữa \(\left( {SAC} \right)\) và \(\left( {SDM} \right)\) bằng \(90^\circ .\)

Chọn B.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Thanh Đa

Số câu hỏi: 50

Copyright © 2021 HOCTAP247