A. \(V = \dfrac{{\pi \sqrt 7 {R^3}}}{7}\).
B. \(V = \dfrac{{3\pi \sqrt 5 {R^3}}}{5}\).
C. \(V = \dfrac{{\pi \sqrt 5 {R^3}}}{5}\).
D. \(V = \dfrac{{3\pi \sqrt 7 {R^3}}}{7}\).
D
Gọi \(I\) là trung điểm của \(AB\) thì \(O'I \bot AB,OI \bot AB\).
Suy ra góc giữa \(\left( {O'AB} \right)\) và \(\left( {O;R} \right)\) là góc giữa \(O'I\) và \(OI\) hay \(\widehat {O'IO} = {60^0}\).
Đặt \(AI = x \Rightarrow AB = 2x\).
Tam giác vuông \(OIA\) có \(OA = R,AI = x\) \( \Rightarrow OI = \sqrt {O{A^2} - A{I^2}} = \sqrt {{R^2} - {x^2}} \).
Tam giác \(O'AB\) đều cạnh \(AB = 2x \Rightarrow O'I = \dfrac{{2x\sqrt 3 }}{2} = x\sqrt 3 \).
Tam giác \(O'OI\) vuông tại \(O\) nên \(\cos {60^0} = \dfrac{{OI}}{{O'I}} \Leftrightarrow \dfrac{1}{2} = \dfrac{{\sqrt {{R^2} - {x^2}} }}{{x\sqrt 3 }} \Leftrightarrow x = \dfrac{{2R}}{{\sqrt 7 }}\).
Suy ra \(OO' = O'I.\sin {60^0} = \dfrac{{2R}}{{\sqrt 7 }}.\sqrt 3 .\dfrac{{\sqrt 3 }}{2} = \dfrac{{3R}}{{\sqrt 7 }}\).
Thể tích khối trụ \(V = \pi {R^2}h = \pi {R^2}.\dfrac{{3R}}{{\sqrt 7 }} = \dfrac{{3\pi \sqrt 7 {R^3}}}{7}\).
Chọn D.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247