A. \(15\)
B. \( - 10\)
C. \( - 19\)
D. \( - 17\)
C
Hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) \( \Leftrightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right)\)
\( \Leftrightarrow \mathop {\lim }\limits_{x \to {0^ + }} \left( {{e^x} + m} \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {2x\sqrt {3 + {x^2}} } \right) \Leftrightarrow 1 + m = 0 \Leftrightarrow m = - 1\)
Khi đó:
\(\begin{array}{l}\int\limits_{ - 1}^1 {f\left( x \right)dx} = \int\limits_{ - 1}^0 {f\left( x \right)dx} + \int\limits_0^1 {f\left( x \right)dx} \\ = \int\limits_{ - 1}^0 {2x\sqrt {3 + {x^2}} dx} + \int\limits_0^1 {\left( {{e^x} - 1} \right)dx} = \int\limits_{ - 1}^0 {\sqrt {3 + {x^2}} d\left( {3 + {x^2}} \right)} + \left. {\left( {{e^x} - x} \right)} \right|_0^1\\ = \left. {\dfrac{2}{3}\left( {3 + {x^2}} \right)\sqrt {3 + {x^2}} } \right|_{ - 1}^0 + \left. {\left( {{e^x} - x} \right)} \right|_0^1 = \dfrac{2}{3}.3.\sqrt 3 - \dfrac{2}{3}.4.2 + \left( {e - 1 - 1} \right) = e + 2\sqrt 3 - \dfrac{{22}}{3}\\ \Rightarrow a = 1,\,\,b = 2,\,\,c = - \dfrac{{22}}{3} \Rightarrow T = a + b + 3c = 1 + 2 - 22 = - 19\end{array}\)
Chọn: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247