Một hình nón có đỉnh \(S\), đáy là đường tròn \(\left( C \right)\) tâm \(O\), bán kính \(R\) bằng với đường cao của hình nón. Tỉ số thể tích của hình nón và hình cầu ngoại tiếp hìn...

Câu hỏi :

Một hình nón có đỉnh \(S\), đáy là đường tròn \(\left( C \right)\) tâm \(O\), bán kính \(R\) bằng với đường cao của hình nón. Tỉ số thể tích của hình nón và hình cầu ngoại tiếp hình nón bằng: 

A. \(\frac{1}{2}\) 

B. \(\frac{1}{3}\) 

C. \(\frac{1}{4}\)

D. \(\frac{1}{6}\) 

* Đáp án

C

* Hướng dẫn giải

Vì hình nón có bán kính \(R\) và chiều cao \(h\) bằng nhau nên \(h = R\) và thể tích hình nón đã cho là \({V_n} = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi {R^2}.R = \frac{1}{3}\pi {R^3}\)

Cắt hình nón bởi mặt phẳng đi qua trục ta được thiết diện là tam giác cân \(SAB\) có \(SH = h = R = HB = \frac{{BA}}{2}\) nên \(\Delta SAB\) vuông tại \(S\) .

Khi đó \(H\)  là tâm đường tròn ngoại tiếp tam giác \(SAB\) và \(H\) cũng là tâm mặt cầu ngoại tiếp hình nón đỉnh \(S.\)

Nên bán kính mặt cầu là \(HS = R\) nên  thể tích hình cầu này là \({V_c} = \frac{4}{3}\pi {R^3}\)

Suy ra \(\frac{{{V_n}}}{{{V_c}}} = \frac{{\frac{1}{3}\pi {R^3}}}{{\frac{4}{3}\pi {R^3}}} = \frac{1}{4}\) .

Chọn C.

Copyright © 2021 HOCTAP247