A. \(f\left( e \right) + f\left( \pi \right) = f\left( 3 \right) + f\left( 4 \right)\)
B. \(f\left( e \right) - f\left( \pi \right) \le 0\)
C. \(f\left( e \right) + f\left( \pi \right) < 2f\left( 2 \right)\)
D. \(f\left( 1 \right) + f\left( 2 \right) = 2f\left( 3 \right)\)
C
Vì \(f'\left( x \right) < 0;\,\forall x > 0\) nên hàm số nghịch biến trên \(\left( {0; + \infty } \right)\) suy ra \(f\left( 1 \right) > f\left( 2 \right) > f\left( e \right) > f\left( 3 \right) > f\left( \pi \right) > f\left( 4 \right)\)
Khi đó
+ \(\left\{ \begin{array}{l}f\left( e \right) > f\left( 3 \right)\\f\left( \pi \right) > f\left( 4 \right)\end{array} \right. \Rightarrow f\left( e \right) + f\left( \pi \right) > f\left( 3 \right) + f\left( 4 \right)\) nên A sai
+ \(f\left( e \right) > f\left( \pi \right)\) nên \(f\left( e \right) - f\left( \pi \right) > 0\) nên B sai
+ \(\left\{ \begin{array}{l}f\left( e \right) < f\left( 2 \right)\\f\left( \pi \right) < f\left( 2 \right)\end{array} \right. \Rightarrow f\left( e \right) + f\left( \pi \right) < 2f\left( 2 \right)\) nên C đúng.
+ \(\left\{ \begin{array}{l}f\left( 1 \right) > f\left( 3 \right)\\f\left( 2 \right) > f\left( 3 \right)\end{array} \right. \Rightarrow f\left( 1 \right) + f\left( 2 \right) > 2f\left( 3 \right)\) nên D sai.
Chọn C.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247