A. \(0 < m < 2\)
B. \( - 2 < m < 0\)
C. \(m < 2\)
D. \( - 2 < m < 2\)
A
Hàm số đã cho có hai điểm cực trị thỏa mãn \({x_{CD}} < {x_{CT}}\) nếu và chỉ nếu \(a > 0\) và phương trình \(y' = 0\) có hai nghiệm phân biệt.
+) \(a > 0 \Leftrightarrow \frac{m}{3} > 0 \Leftrightarrow m > 0\).
+) \(y' = 0 \Leftrightarrow m{x^2} + 4x + m = 0\) có \(\Delta ' = 4 - {m^2}\).
Phương trình \(y' = 0\) có hai nghiệm phân biệt \( \Leftrightarrow \Delta = 4 - {m^2} > 0 \Leftrightarrow - 2 < m < 2\).
Kết hợp ta được \(0 < m < 2\).
Chọn A.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247