A. \(\frac{{19}}{{54}}\)
B. \(\frac{{38}}{3}\)
C. \(\frac{{23}}{4}\)
D. \(\frac{{25}}{2}\)
A
Gọi \(\left( \alpha \right)\) là mặt phẳng chứa \(B'G\) và song song với \(C'D.\)
Gọi \(M,\,N\) lần lượt là giao điểm của \(\left( \alpha \right)\) với \(CD\) và \(CC'.\)
Khi đó ta có: \(MN//C'D\) và \(\frac{{CM}}{{CD}} = \frac{{CN}}{{CC'}} = \frac{2}{3}\)
Và \(\left( \alpha \right)\) là mặt phẳng \(\left( {AMNB'} \right),\,\,\left( H \right)\) là phần khối đa diện chứa \(C.\)
Khi đó ta có: \({V_{\left( H \right)}} = {V_{M.BCNB'}} + {V_{B'.ABM}}\)
Ta có: \(BCNB'\) là hình thang vuông tại \(B,\,\,C\) có diện tích:
\(\begin{array}{l}{S_{BCNB'}} = \frac{1}{2}\left( {BB' + CN} \right).BC = \frac{1}{2}\left( {4a + \frac{2}{3}.4a} \right).4a = \frac{{40{a^2}}}{3}.\\ \Rightarrow {V_{MBCNB'}} = \frac{1}{3}MC.{S_{BCNB'}} = \frac{1}{3}.\frac{2}{3}.3a.\frac{{40}}{3}{a^2} = \frac{{80{a^3}}}{9}.\end{array}\)
Mặt khác \({S_{\Delta ABM}} = {S_{ABCD}} - {S_{\Delta BCM}} - {S_{\Delta ADM}} = 3a.4a - \frac{1}{2}.4a.\frac{2}{3}.3a - \frac{1}{2}.4a.\frac{1}{3}.3a = 6{a^2}.\)
\(\begin{array}{l} \Rightarrow {V_{B'ABM}} = \frac{1}{3}BB'.{S_{ABM}} = \frac{1}{3}.4a.6{a^2} = 8{a^3}.\\ \Rightarrow {V_{\left( H \right)}} = \frac{{80}}{9}{a^3} + 8{a^3} = \frac{{152{a^3}}}{9}.\end{array}\)
Thể tích hình hộp chữ nhật là: \(V = 3a.4a.4a = 48{a^3}.\)
\( \Rightarrow \frac{{{V_{\left( H \right)}}}}{V} = \frac{{152{a^3}}}{9}.\frac{1}{{48{a^3}}} = \frac{{19}}{{54}}.\)
Chọn A.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247