Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 36,\) điểm \(I\left(...

Câu hỏi :

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 36,\) điểm \(I\left( {1;2;0} \right)\) và đường thẳng \(d:\frac{{x - 2}}{3} = \frac{{y - 2}}{4} = \frac{z}{{ - 1}}.\) Tìm tọa độ điểm \(M\) thuộc \(d,N\) thuộc \(\left( S \right)\) sao cho \(I\) là trung điểm của \(MN.\) 

A. \(\left[ \begin{array}{l}N\left( {3;2;1} \right)\\N\left( {3;6; - 1} \right)\end{array} \right.\)  

B. \(\left[ \begin{array}{l}N\left( { - 3; - 2;1} \right)\\N\left( {3;6; - 1} \right)\end{array} \right.\) 

C. \(\left[ \begin{array}{l}N\left( { - 3;2;1} \right)\\N\left( {3;6;1} \right)\end{array} \right.\)

D. \(\left[ \begin{array}{l}N\left( { - 3; - 2; - 1} \right)\\N\left( {3;6;1} \right)\end{array} \right.\)

* Đáp án

B

* Hướng dẫn giải

+ Đường thẳng \(d:\frac{{x - 2}}{3} = \frac{{y - 2}}{4} = \frac{z}{{ - 1}} \Leftrightarrow \left\{ \begin{array}{l}x = 2 + 3t\\y = 2 + 4t\\z =  - t\end{array} \right.\).

Vì \(M \in d \Rightarrow M\left( {2 + 3t;2 + 4t; - t} \right)\)

\(I\left( {1;2;0} \right)\) là trung điểm đoạn \(MN \Rightarrow \left\{ \begin{array}{l}{x_I} = \frac{{{x_M} + {x_N}}}{2}\\{y_I} = \frac{{{y_M} + {y_N}}}{2}\\{z_I} = \frac{{{z_M} + {z_N}}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_N} = 2{x_I} - {x_M} =  - 3t\\{y_N} = 2{y_I} - {y_M} = 2 - 4t\\{z_N} = 2{z_I} - {z_M} = t\end{array} \right. \Rightarrow N\left( { - 3t;2 - 4t;t} \right)\)

Vì \(N \in \left( S \right)\) nên thay tọa độ điểm \(N\) vào phương trình  mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 36\) ta được:

\({\left( { - 3t - 1} \right)^2} + {\left( { - 4t} \right)^2} + {\left( {t - 3} \right)^2} = 36 \Leftrightarrow 26{t^2} - 26 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1 \Rightarrow N\left( { - 3; - 2;1} \right)\\t =  - 1 \Rightarrow N\left( {3;6; - 1} \right)\end{array} \right.\)

Chọn B.

Copyright © 2021 HOCTAP247