Cho hai số phức \({z_1},\,\,{z_2}\) thỏa mãn các điều kiện \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = 2\) và \(\left| {{z_1} + 2{z_2}} \right| = 4\). Giá trị của \(\left|...

Câu hỏi :

Cho hai số phức \({z_1},\,\,{z_2}\) thỏa mãn các điều kiện \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = 2\) và \(\left| {{z_1} + 2{z_2}} \right| = 4\). Giá trị của \(\left| {2{z_1} - {z_2}} \right|\) bằng: 

A. \(2\sqrt 6 \)         

B. \(\sqrt 6 \)     

C. \(3\sqrt 6 \)  

D. \(8\)

* Đáp án

A

* Hướng dẫn giải

Gọi M, N lần lượt là điểm biểu diễn của \({z_1},\,\,{z_2}\) trên mặt phẳng phức

Do \(\left| {{z_1}} \right| = \left| {{z_2}} \right| = 2\) \( \Rightarrow M,N\) thuộc đường tròn tâm O bán kính 2.

Gọi P, Q, R lần lượt là điểm biểu diễn của \(2{z_2},\,\, - {z_2},\,\,2{z_1}\) trên mặt phẳng phức (như hình vẽ)

Dựng các hình bình hành \(OMEP,\,\,ORFQ\).

Ta có:   \(\left| {{z_1} + 2{z_2}} \right| = 4 \Rightarrow OE = 4\)

            \(\left| {2{z_1} - {z_2}} \right| = OF\)

Tam giác OPE có:

\(\cos \widehat P = \dfrac{{P{E^2} + P{O^2} - E{O^2}}}{{2.PE.PO}} = \dfrac{{{2^2} + {4^2} - {4^2}}}{{2.2.4}} = \dfrac{1}{4} \Rightarrow \cos \widehat {ROQ} = \dfrac{1}{4}\)

\( \Rightarrow \cos \widehat {ORF} =  - \dfrac{1}{4}\)

Tam giác ORF có: \(O{F^2} = O{R^2} + R{F^2} - 2.OR.RF.\cos \widehat {ORF} = {4^2} + {2^2} - 2.4.2.\dfrac{{ - 1}}{4} = 16 + 4 + 4 = 24\)

\( \Rightarrow OF = 2\sqrt 6  \Rightarrow \left| {2{z_1} - {z_2}} \right| = 2\sqrt 6 \)

Chọn: A

Copyright © 2021 HOCTAP247