Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(a,\)đường cao \(SA = x.\) Góc giữa \(\left( {SBC} \right)\) và mặt đáy bằng \({60^0}\). Khi đó \(x\) bằng

Câu hỏi :

Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(a,\)đường cao \(SA = x.\) Góc giữa \(\left( {SBC} \right)\) và mặt đáy bằng \({60^0}\). Khi đó \(x\) bằng 

A. \(\dfrac{{a\sqrt 6 }}{2}.\) 

B. \(a\sqrt 3 .\) 

C. \(\dfrac{{a\sqrt 3 }}{2}.\) 

D. \(\dfrac{a}{{\sqrt 3 }}.\)    

* Đáp án

B

* Hướng dẫn giải

Ta có: \(\left( {SBC} \right) \cap \left( {ABCD} \right) = BC\)

Mà \(\left( {SAB} \right) \bot BC\), (do \(AB \bot BC,\,\,SA \bot BC\))

\(\left( {SBC} \right) \cap \left( {SAB} \right) = SB,\,\,\left( {ABCD} \right) \cap \left( {SAB} \right) = AB \Rightarrow \)\(\widehat {\left( {\left( {SBC} \right);\left( {ABCD} \right)} \right)} = \widehat {\left( {SB;AB} \right)} = \widehat {SBA} = {60^0}\)

\(\Delta SAB\) vuông tại A \( \Rightarrow SA = AB\tan \widehat {SBA} = a.\tan {60^0} = a\sqrt 3 \)

Vậy \(x = a\sqrt 3 .\)

Chọn: B          

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Đa Phước

Số câu hỏi: 50

Copyright © 2021 HOCTAP247