Cho hình chóp tứ giác S.ABCD có thể tích bằng V. Lấy điểm\(A'\) trên cạnh SA sao cho \(SA' = \dfrac{1}{3}SA\). Mặt phẳng qua \(A'\) và song song với đáy của hình chóp cắt các cạnh...

Câu hỏi :

Cho hình chóp tứ giác S.ABCD có thể tích bằng V. Lấy điểm\(A'\) trên cạnh SA sao cho \(SA' = \dfrac{1}{3}SA\). Mặt phẳng qua \(A'\) và song song với đáy của hình chóp cắt các cạnh SB, SC, SD  lần lượt tại B’, C’, D’. Tính theo V thể tích khối chóp S.A’B’C’D’  ? 

A. \(\dfrac{V}{3}.\)  

B. \(\dfrac{V}{{81}}.\)   

C. \(\dfrac{V}{{27}}.\)  

D. \(\dfrac{V}{9}.\) 

* Đáp án

C

* Hướng dẫn giải

Do \(\left( {A'B'C'D'} \right)//\left( {ABCD} \right)\) và  \(SA' = \dfrac{1}{3}SA\) nên \(\dfrac{{SA'}}{{SA}} = \dfrac{{SB'}}{{SB}} = \dfrac{{SC'}}{{SC}} = \dfrac{{SD'}}{{SD}} = \dfrac{1}{3}\)

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}\dfrac{{{V_{S.A'C'D'}}}}{{{V_{S.ACD}}}} = {\left( {\dfrac{1}{3}} \right)^3} = \dfrac{1}{{27}}\\\dfrac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = {\left( {\dfrac{1}{3}} \right)^3} = \dfrac{1}{{27}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{V_{S.A'C'D'}} = \dfrac{1}{{27}}{V_{S.ACD}} = \dfrac{1}{{54}}{V_{S.ABCD}}\\{V_{S.A'B'C'}} = \dfrac{1}{{27}}{V_{S.ABC}} = \dfrac{1}{{54}}{V_{S.ABCD}}\end{array} \right.\\ \Rightarrow {V_{S.A'B'C'D'}} = \dfrac{1}{{27}}{V_{S.ABCD}} = \dfrac{1}{{27}}V\end{array}\).

Chọn: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Đa Phước

Số câu hỏi: 50

Copyright © 2021 HOCTAP247