Phương trình \({4^x} - m\,{.2^{x + 1}} + 2m = 0\) có hai nghiệm \({x_1}\;,\;{x_2}\) thỏa \({x_1} + {x_2} = 3\) khi

Câu hỏi :

Phương trình \({4^x} - m\,{.2^{x + 1}} + 2m = 0\) có hai nghiệm \({x_1}\;,\;{x_2}\) thỏa  \({x_1} + {x_2} = 3\) khi 

A. \(m = 4\).   

B. \(m = 3\).    

C. \(m = 2\). 

D. \(m = 1\). 

* Đáp án

A

* Hướng dẫn giải

Đặt \({2^x} = t\,\,\left( {t > 0} \right)\). Phương trình \({4^x} - m\,{.2^{x + 1}} + 2m = 0\) (1) trở thành: \({t^2} - 2m\,t + 2m = 0\) (2)

Phương trình (1) có hai nghiệm \({x_1}\;,\;{x_2}\) thỏa  \({x_1} + {x_2} = 3 \Leftrightarrow \) Phương trình (2) có hai nghiệm \({t_1}\;,\;{t_2}\) thỏa  \({t_1},{t_2} > 0,\,\,\,\,\,{t_1}{t_2} = {2^{{x_1} + {x_2}}} = {2^3} = 8\)

\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\2m = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 2m > 0\\2m = 8\end{array} \right. \Leftrightarrow m = 4\).

Chọn: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Đa Phước

Số câu hỏi: 50

Copyright © 2021 HOCTAP247