Gọi \(S\)là diện tích hình phẳng giới hạn bởi các đồ thị hàm số: \(y = {x^3} - 3x\) ;\(y = x\). Tính \(S\) ?

Câu hỏi :

Gọi \(S\)là diện tích hình phẳng giới hạn bởi các đồ thị hàm số: \(y = {x^3} - 3x\) ;\(y = x\). Tính \(S\) ?  

A. \(S = 4\).   

B. \(S = 8\).   

C. \(S = 2\). 

D. \(S = 0\). 

* Đáp án

B

* Hướng dẫn giải

Giải phương trình \({x^3} - 3x = x \Leftrightarrow {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  \pm 2\end{array} \right.\)

Diện tích cần tìm là:

\(\begin{array}{l}S = \int\limits_{ - 2}^2 {\left| {{x^3} - 3x - x} \right|dx}  = \int\limits_{ - 2}^2 {\left| {{x^3} - 4x} \right|dx} \\\,\,\,\, = \int\limits_{ - 2}^0 {\left| {{x^3} - 4x} \right|dx}  + \int\limits_0^2 {\left| {{x^3} - 4x} \right|dx} \\\,\,\,\, = \int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx}  - \int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} \\\,\,\,\, = \left. {\left( {\dfrac{1}{4}{x^4} - 2{x^2}} \right)} \right|_{ - 2}^0 - \left. {\left( {\dfrac{1}{4}{x^4} - 2{x^2}} \right)} \right|_0^2\\\,\,\,\, = \left( {0 - \left( { - 4} \right)} \right) - \left( {\left( { - 4} \right) - 0} \right) = 8\end{array}\)

Chọn: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Đa Phước

Số câu hỏi: 50

Copyright © 2021 HOCTAP247