A. \(T = 3\).
B. \(T = - 3\).
C. \(T = 1\).
D. \(T = - 1\).
D
\(S = \overrightarrow {MA} .\overrightarrow {MB} + 2\overrightarrow {MB} .\overrightarrow {MC} + 3\overrightarrow {MC} .\overrightarrow {MA} \)
\( = \dfrac{1}{2}\left[ {M{A^2} + M{B^2} - {{\left( {\overrightarrow {MA} - \overrightarrow {MB} } \right)}^2} + 2M{B^2} + 2M{C^2} - 2{{\left( {\overrightarrow {MB} - \overrightarrow {MC} } \right)}^2} + 3M{A^2} + 3M{C^2} - 3{{\left( {\overrightarrow {MA} - \overrightarrow {MC} } \right)}^2}} \right]\)
\( = \dfrac{1}{2}\left[ {4M{A^2} + 3M{B^2} + 5M{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\)
Xác định tọa độ điểm \(I\left( {m;n;p} \right)\) sao cho
\(4\overrightarrow {IA} + 3\overrightarrow {IB} + 5\overrightarrow {IC} = \overrightarrow 0 \Leftrightarrow \left\{ \begin{array}{l}4\left( {1 - m} \right) + 3\left( { - 2 - m} \right) + 5\left( {0 - m} \right) = 0\\4\left( { - 1 - n} \right) + 3\left( {0 - n} \right) + 5\left( {1 - n} \right) = 0\\4\left( {2 - p} \right) + 3\left( {3 - p} \right) + 5\left( { - 2 - p} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = - \dfrac{1}{6}\\n = \dfrac{1}{{12}}\\p = \dfrac{7}{{12}}\end{array} \right.\,\,\,\,\,\,\, \Rightarrow I\left( { - \dfrac{1}{6};\dfrac{1}{{12}};\dfrac{7}{{12}}} \right)\)
Khi đó:
\(\begin{array}{l}S = \dfrac{1}{2}\left[ {4M{A^2} + 3M{B^2} + 5M{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\\\,\,\,\, = \dfrac{1}{2}\left[ {4{{\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)}^2} + 3{{\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)}^2} + 5{{\left( {\overrightarrow {MI} + \overrightarrow {IC} } \right)}^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\\\,\,\,\, = \dfrac{1}{2}\left[ {12M{I^2} + 2\overrightarrow {MI} .\left( {4\overrightarrow {IA} + 3\overrightarrow {IB} + 5\overrightarrow {IC} } \right) + 4I{A^2} + 3I{B^2} + 5I{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\\\,\,\,\, = \dfrac{1}{2}\left[ {12M{I^2} + 4I{A^2} + 3I{B^2} + 5I{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\,\,\left( {do\,\,4\overrightarrow {IA} + 3\overrightarrow {IB} + 5\overrightarrow {IC} = \overrightarrow 0 } \right)\end{array}\)
\( \Rightarrow S\) đạt giá trị nhỏ nhất khi và chỉ khi \(MI\) ngắn nhất \( \Leftrightarrow M\) là hình chiếu của I lên (Oxy)
\( \Leftrightarrow M\left( { - \dfrac{1}{6};\dfrac{1}{{12}};0} \right)\,\,\, \Rightarrow \left\{ \begin{array}{l}a = - \dfrac{1}{6}\\b = \dfrac{1}{{12}}\\c = 0\end{array} \right.\)\( \Rightarrow T = 12a + 12b + c = 12.\dfrac{{ - 1}}{6} + 12.\dfrac{1}{{12}} + 0 = - 1\).
Chọn: D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247