Có bao nhiêu số nguyên \(x\) thoả mãn \(\left(4^x-5.2^{x+2}+64\right) \sqrt{2-\log (4 x)} \geq 0\).

Câu hỏi :

Có bao nhiêu số nguyên \(x\) thoả mãn \(\left(4^x-5.2^{x+2}+64\right) \sqrt{2-\log (4 x)} \geq 0\). 

A. 22

B. 25

C. 23

D. 24

* Đáp án

D

* Hướng dẫn giải

Điều kiện: \(\begin{cases} 2-\log(4x)\ge 0\\ 4x>0\end{cases}\Leftrightarrow 0\)\le>

Giải (1): \(\log(4x)=2\Leftrightarrow 4x=10^2\Leftrightarrow x=25\text{(thỏa mãn)}\)

Giải (2): \(\left(2^x\right)^2-20.2^x+64\ge 0\Leftrightarrow 2^x\ge 16\) hoặc \(2^x\le 4\). Từ đó tìm được \(x\ge 4\) hoặc \(x\le 2\).

Kết hợp với điều kiện, ta có các giá trị nguyên thỏa mãn trong trường hợp này \(x\in \left\{1;2\right\}\cup \left\{4;5;6\dots 25\right\}\).

Vậy có 24 số nguyên \(x\) thỏa đề bài.

Copyright © 2021 HOCTAP247