A.
\(\dfrac{8 \sqrt{3}}{3} \pi a^3\)
B. \(4 \sqrt{6} \pi a^3\)
C. \(\dfrac{16 \sqrt{3}}{3} \pi a^3\)
D. \(8 \sqrt{2} \pi a^3\)
D
Ta có \(V=\dfrac{1}{3} S_d \cdot h=\dfrac{1}{2} \pi r^2 h\).
Tìm \(h=S O\).
Gọi \(I\) là trung điểm của \(AB\). Khi đó \(\begin{cases} SI\perp AB\\OI\perp AB\end{cases}\), suy ra \(AB\perp (SOI)\) mà \(AB\subset (SAB)\Rightarrow (SAB)\perp (SOI)\).
Kẻ \(OH\perp SI\), ta có: \(\begin{cases} (SAB)\perp (SOI)\\(SAB)=SI\\OH\perp SI\end{cases}\), suy ra \(OH\perp (SAB)\). Suy ra \(d(O;(SAB))=OH=2a\).
Xét \(\Delta AOI\) vuông \(I\), suy ra \(OI=\sqrt{OA^2-AI^2}=\sqrt{OA^2-\left(\dfrac{AB}{2}\right)^2}=\sqrt{\left(2\sqrt{3}a\right)^2-\left(\dfrac{4a}{2}\right)^2}=2\sqrt{2}a.\)
Xét \(\Delta SOI\) vuông tại \(S\).
\(\begin{array}{l}
\frac{1}{{O{H^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{I^2}}} \Rightarrow \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{I^2}}} = \frac{{O{I^2} - O{H^2}}}{{O{H^2}.O{I^2}}} \Rightarrow S{O^2} = \frac{{O{H^2}.O{I^2}}}{{O{I^2} - O{H^2}}}\\
\Rightarrow SO = \frac{{OH.OI}}{{\sqrt {O{I^2} - O{H^2}} }} = \frac{{2a.2\sqrt 2 a}}{{\sqrt {{{\left( {2a\sqrt 2 } \right)}^2} - {{(2a)}^2}} }} = 2\sqrt 2 a
\end{array}\)
Vậy \(V=\dfrac{1}{3}S_{\text{đáy}}.h=\dfrac{1}{3}\pi r^2h=\dfrac{1}{3}\pi (OA)^2,SO=\dfrac{1}{3}\pi \left(2\sqrt{3}a\right)^2.2\sqrt{2}a=8\sqrt{2}\pi a^3\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247