Khai triển nhị thức sau \({\left( {x + 2} \right)^{n + 5}}\,\,\left( {n \in \mathbb{N}} \right)\) có tất cả \(2019\) số hạng. Tìm \(n\).

Câu hỏi :

Khai triển nhị thức sau \({\left( {x + 2} \right)^{n + 5}}\,\,\left( {n \in \mathbb{N}} \right)\) có tất cả \(2019\) số hạng. Tìm \(n\). 

A. \(2018\)   

B. \(2014\) 

C. \(2013\)        

D. \(2015\) 

* Đáp án

D

* Hướng dẫn giải

Khai triển nhị thức \({\left( {x + 2} \right)^{n + 5}}\,\,\left( {n \in \mathbb{N}} \right)\) có tất cả \(2019\) số hạng nên \(n + 5 = 2019 + 1\)\( \Leftrightarrow n = 2015\).

Chọn D.

Copyright © 2021 HOCTAP247