A. \(D = \left[ {2; + \infty } \right)\)
B. \(D = \mathbb{R}\backslash \left\{ 2 \right\}\)
C. \(D = \mathbb{R}\)
D. \(D = \left( {2; + \infty } \right)\)
A. \(\mathbb{R}\)
B. \(\left( {1; + \infty } \right)\)
C. \(\left( { - 1; + \infty } \right)\)
D. \(\left( { - \infty ; - 1} \right)\)
A. \( - 1\)
B. \(2\)
C. \(1\)
D. \( - 2\)
A. \(\log \left( {ab} \right) = \log a + \log b\)
B. \(\log \left( {ab} \right) = \log a.\log b\)
C. \(\log \frac{a}{b} = \frac{{\log a}}{{\log b}}\)
D. \(\log \frac{a}{b} = \log b - \log a\)
A. \(y = \frac{{2x + 2}}{{x + 1}}\)
B. \(y = \frac{{2x + 1}}{{x + 1}}\)
C. \(y = \frac{{x - 1}}{{x + 1}}\)
D. \(y = \frac{{2x + 3}}{{1 - x}}\)
A. \(x - 2y - 5z = 0\)
B. \(x - 2y - 5z - 5 = 0\)
C. \(x - 2y - 5z + 5 = 0\)
D. \(2x - y + 5z - 5 = 0\)
A. \(11\)
B. \(13\)
C. \(15\)
D. \(14\)
A. \(\int {{e^x}dx} = {e^x} + C\)
B. \(\int {\ln xdx} = \frac{1}{x} + C\)
C. \(\int {\left( {{x^2} - 1} \right)dx} = \frac{{{x^3}}}{3} - x + C\)
D. \(\int {\frac{x}{{{x^2} + 1}}dx} = \frac{1}{2}\ln \left( {{x^2} + 1} \right) + C\)
A. \( - 10\)
B. \(12\)
C. \( - 17\)
D. \(1\)
A. \(1\) và \(2\)
B. \( - 2\) và \(1\)
C. \(1\) và \( - 2\)
D. \(2\) và \(1\)
A. \(8{a^3}\)
B. \(2{a^3}\)
C. \({a^3}\)
D. \(6{a^3}\)
A. \(\frac{{\sqrt 3 \pi {a^3}}}{3}\)
B. \(\sqrt 3 \pi {a^3}\)
C. \(\frac{{2\pi {a^3}}}{3}\)
D. \(\frac{{\pi {a^3}}}{3}\)
A. \(\left( {2;1; - 3} \right)\)
B. \(\left( {2; - 3;1} \right)\)
C. \(\left( {1;2; - 3} \right)\)
D. \(\left( {1; - 3;2} \right)\)
A. \(N\left( {2; - 1; - 3} \right)\)
B. \(P\left( {5; - 2; - 1} \right)\)
C. \(Q\left( { - 1;0; - 5} \right)\)
D. \(M\left( { - 2;1;3} \right)\)
A. \(2018\)
B. \(2014\)
C. \(2013\)
D. \(2015\)
A. \(3\)
B. \(0\)
C. \(1\)
D. \(2\)
A. \(y = 2019\)
B. \(x = 2019\)
C. \(y = x + 2019\)
D. \(y = 2019x\)
A. \(5\)
B. \(3\)
C. \(1\)
D. \(2\)
A. \(0\)
B. \(1\)
C. \(2\)
D. \(3\)
A. \(\frac{7}{2}\)
B. \(\frac{1}{2}\)
C. \(2\)
D. \(\frac{3}{8}\)
A. \(0\)
B. \(1\)
C. \(2\)
D. \(3\)
A. \(2\ln 3\)
B. \(1\)
C. \(\frac{2}{{\ln 3}}\)
D. \(\frac{1}{{2\ln 3}}\)
A. \({x_1} + {x_2} = 0\)
B. \(2{x_1} - {x_2} = 1\)
C. \({x_1} - {x_2} = 2\)
D. \({x_1} + 2{x_2} = 0\)
A. \(S = \left( { - \infty ; - 2} \right)\)
B. \(S = \left( {1; + \infty } \right)\)
C. \(S = \left( { - 2; + \infty } \right)\)
D. \(S = \left( { - 1; + \infty } \right)\)
A. \( - \frac{1}{2}\)
B. \( - \frac{1}{4}\)
C. \(\frac{4}{5}\)
D. \(\frac{1}{5}\)
A. \(5\)
B. \(1\)
C. \(\sqrt {10} \)
D. \(\sqrt 5 \)
A. \(\frac{{a\sqrt {21} }}{7}\)
B. \(\frac{{a\sqrt {15} }}{7}\)
C. \(\frac{{a\sqrt {21} }}{3}\)
D. \(\frac{{a\sqrt {15} }}{3}\)
A. \(9{a^2}\pi \)
B. \(\frac{{27\pi {a^2}}}{2}\)
C. \(\frac{{9\pi {a^2}}}{2}\)
D. \(\frac{{13\pi {a^2}}}{6}\)
A. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 9\)
B. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 9\)
C. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 3\)
D. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 3\)
A. \(\frac{9}{{7\sqrt 2 }}\)
B. \(\frac{9}{7}\)
C. \(\frac{9}{{14}}\)
D. \(\frac{9}{{\sqrt 2 }}\)
A. \({e^4} - 2\)
B. \({e^2} - 2\)
C. \(e - 2\)
D. \({e^3} - 2\)
A. \(S = \left[ { - 1;0} \right]\)
B. \(S = \emptyset \)
C. \(S = \left\{ { - 1} \right\}\)
D. \(S = \left\{ 1 \right\}\)
A. \(1\)
B. \(2\)
C. \(3\)
D. \(4\)
A. \(V = 2\left( {\pi + 1} \right)\)
B. (V = 2\pi \left( {\pi + 1} \right)\)
C. \(V = 2{\pi ^2}\)
D. \(V = 2\pi \)
A. \(S = 8\)
B. \(S = 4\)
C. \(S = 12\)
D. \(S = 16\)
A. \(\left( {0;1} \right)\)
B. \(\left( {0; - 1} \right)\)
C. \(\left( { - 1;0} \right)\)
D. \(\left( {1;0} \right)\)
A. \(R = a\sqrt 2 \)
B. \(R = 2a\sqrt 2 \)
C. \(R = 2a\)
D. \(R = a\)
A. \(V = \frac{{\sqrt 3 {a^3}}}{6}\)
B. \(V = \frac{{4{a^3}}}{3}\)
C. \(V = \frac{{\sqrt 3 {a^3}}}{2}\)
D. \(V = 4{a^3}\)
A. \(\frac{{x - 3}}{4} = \frac{{y + 1}}{1} = \frac{{z - 2}}{6}\)
B. \(\frac{{x - 3}}{{ - 4}} = \frac{{y + 1}}{1} = \frac{{z - 2}}{{ - 6}}\)
C. \(\frac{{x + 1}}{4} = \frac{y}{{ - 1}} = \frac{{z - 4}}{6}\)
D. \(\frac{{x - 1}}{4} = \frac{y}{{ - 1}} = \frac{{z + 4}}{6}\)
A. \(\left( {1;2} \right)\)
B. \(\left( {2; + \infty } \right)\)
C. \(\left( { - \infty ;1} \right)\)
D. \(\left( { - 1;1} \right)\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247