Cho biết \(\int\limits_0^1 {\frac{{xdx}}{{{{\left( {x + 3} \right)}^2}}}}  = a + b\ln 3 + c\ln 4\) với \(a,\,\,b,\,\,c\) là các số thực.

Câu hỏi :

Cho \(\int\limits_0^1 {\frac{{xdx}}{{{{\left( {x + 3} \right)}^2}}}}  = a + b\ln 3 + c\ln 4\) với \(a,\,\,b,\,\,c\) là các số thực. Hãy tính giá trị của \(a + b + c\). 

A. \( - \frac{1}{2}\)     

B. \( - \frac{1}{4}\) 

C. \(\frac{4}{5}\)     

D.  \(\frac{1}{5}\) 

* Đáp án

B

* Hướng dẫn giải

\(\begin{array}{l}\int\limits_0^1 {\frac{{xdx}}{{{{\left( {x + 3} \right)}^2}}}}  = \int\limits_0^1 {\frac{{x + 3 - 3}}{{{{\left( {x + 3} \right)}^2}}}dx} \\ = \int\limits_0^1 {\frac{{dx}}{{x + 3}}}  - 3\int\limits_0^1 {\frac{{dx}}{{{{\left( {x + 3} \right)}^2}}}} \\ = \left. {\left( {\ln \left| {x + 3} \right| + \frac{3}{{x + 3}}} \right)} \right|_0^1\\ = \ln 4 + \frac{3}{4} - \ln 3 - 1\\ =  - \frac{1}{4} - \ln 3 + \ln 4\end{array}\) 

\( \Rightarrow a =  - \frac{1}{4},\,\,b =  - 1,\,\,c = 1\)

Vậy \(a + b + c =  - \frac{1}{4} - 1 + 1 =  - \frac{1}{4}\).

Chọn B.

Copyright © 2021 HOCTAP247