Trong không gian \(Oxyz\), mặt cầu tâm \(I\left( {1;2; - 1} \right)\) và cắt mặt phẳng sau \(\left( P \right):\,\,2x - y + 2z - 1 = 0\) theo một đường tròn có bán kính bằng \(\sqrt...

Câu hỏi :

Trong không gian \(Oxyz\), mặt cầu tâm \(I\left( {1;2; - 1} \right)\) và cắt mặt phẳng sau \(\left( P \right):\,\,2x - y + 2z - 1 = 0\) theo một đường tròn có bán kính bằng \(\sqrt 8 \) có phương trình là:

A. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 9\) 

B. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 9\) 

C. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 3\) 

D. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 3\) 

* Đáp án

B

* Hướng dẫn giải

Ta có: \(d\left( {I;\left( P \right)} \right) = \frac{{\left| {2.1 - 2 + 2.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }}\)\( = 1 = d\)

\( \Rightarrow \) Bán kính của mặt cầu là \(R = \sqrt {{r^2} + {d^2}}  = \sqrt {8 + 1}  = 3\).

Vậy phương trình mặt cầu cần tìm là: \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 9.\)

Chọn B.

Copyright © 2021 HOCTAP247