A. \(S = 8\)
B. \(S = 4\)
C. \(S = 12\)
D. \(S = 16\)
A
Xét phương trình hoành độ giao điểm: \({x^3} - 3x + 2 = x + 2\)\( \Leftrightarrow {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\\x = - 2\end{array} \right.\)
Khi đó diện tích \(S\) của hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = {x^3} - 3x + 2\) và \(y = x + 2\) là:
\(\begin{array}{l}V = \int\limits_{ - 2}^2 {\left| {{x^3} - 4x} \right|dx} \\ = \int\limits_{ - 2}^0 {\left| {{x^3} - 4x} \right|dx} + \int\limits_0^2 {\left| {{x^3} - 4x} \right|dx} \\ = \left| {\int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx} } \right| + \left| {\int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} } \right|\\ = 4 + 4 = 8\end{array}\)
Chọn A.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247