Cho hàm số sau \(y = f\left( x \right)\) có đồ thị \(y = f\left( x \right)\) như hình bên.

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) có đồ thị \(y = f'\left( x \right)\) như hình bên. Hỏi hàm số \(y = f\left( {3 - 2x} \right) + 2019\) nghịch biến trên khoảng nào sau đây?

A. \(\left( {1;2} \right)\)   

B. \(\left( {2; + \infty } \right)\) 

C. \(\left( { - \infty ;1} \right)\)  

D. \(\left( { - 1;1} \right)\) 

* Đáp án

A

* Hướng dẫn giải

Đặt \(g\left( x \right) = f\left( {3 - 2x} \right) + 2019\), khi đó ta có: \(g'\left( x \right) =  - 2f'\left( {3 - 2x} \right)\).

Xét \(g'\left( x \right) < 0 \Leftrightarrow  - 2f'\left( {3 - 2x} \right) < 0\)\( \Leftrightarrow f'\left( {3 - 2x} \right) > 0\)

\( \Leftrightarrow \left[ \begin{array}{l} - 1 < 3 - 2x < 1\\3 - 2x > 4\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l} - 4 <  - 2x <  - 2\\2x <  - 1\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}1 < x < 2\\x <  - \frac{1}{2}\end{array} \right.\) 

Vậy hàm số \(g\left( x \right) = f\left( {3 - 2x} \right) + 2019\) nghịch biến trên \(\left( {1;2} \right)\) và \(\left( { - \infty ; - \frac{1}{2}} \right)\).

Chọn A.

Copyright © 2021 HOCTAP247