A. Trục hoành và trục tung.
B. Đường phân giác của góc phần tư thứ nhất và thứ ba.
C. Trục hoành.
D. Các đường phân giác của góc tạo bởi hai trục tọa độ.
D
Đặt \(z = a + bi\,\,\left( {a,b \in \mathbb{R}} \right)\) ta có :
\(\begin{array}{l}{z^2} + {\left( {\overline z } \right)^2} = 0 \Leftrightarrow {\left( {a + bi} \right)^2} + {\left( {a - bi} \right)^2} = 0\\ \Leftrightarrow {a^2} + 2abi - {b^2} + {a^2} - 2abi - {b^2} = 0\\ \Leftrightarrow 2{a^2} - 2{b^2} = 0 \Leftrightarrow {a^2} - {b^2} = 0 \Leftrightarrow \left[ \begin{array}{l}a = b\\a = - b\end{array} \right.\end{array}\)
Vậy tập hợp các điểm biểu diễn số phức thỏa mãn bài toán là các đường thẳng \(y = x\) và \(y = - x\) chính là các đường phân giác của các góc phần tư.
Chọn D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247