Trong mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện \({z^2} + {(\overline z )^2} = 0\) là:

Câu hỏi :

Trong mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện \({z^2} + {(\overline z )^2} = 0\) là: 

A. Trục hoành và trục tung. 

B. Đường phân giác của góc phần tư thứ nhất và thứ ba. 

C. Trục hoành. 

D. Các đường phân giác của góc tạo bởi hai trục tọa độ.

* Đáp án

D

* Hướng dẫn giải

Đặt \(z = a + bi\,\,\left( {a,b \in \mathbb{R}} \right)\) ta có :

\(\begin{array}{l}{z^2} + {\left( {\overline z } \right)^2} = 0 \Leftrightarrow {\left( {a + bi} \right)^2} + {\left( {a - bi} \right)^2} = 0\\ \Leftrightarrow {a^2} + 2abi - {b^2} + {a^2} - 2abi - {b^2} = 0\\ \Leftrightarrow 2{a^2} - 2{b^2} = 0 \Leftrightarrow {a^2} - {b^2} = 0 \Leftrightarrow \left[ \begin{array}{l}a = b\\a =  - b\end{array} \right.\end{array}\)

Vậy tập hợp các điểm biểu diễn số phức thỏa mãn bài toán là các đường thẳng \(y = x\) và \(y =  - x\) chính là các đường phân giác của các góc phần tư.

Chọn D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 12 năm 2021-2022 Trường THPT Ngô Gia Tự

Số câu hỏi: 40

Copyright © 2021 HOCTAP247