Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A(2;2; - 1);B( - 4;2; - 9)\) . Viết phương trình mặt cầu đường kính AB.

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A(2;2; - 1);B( - 4;2; - 9)\) . Viết phương trình mặt cầu đường kính AB. 

A. \({(x + 3)^2} + {y^2} + {(z + 4)^2} = 5\) 

B. \({(x + 1)^2} + {\left( {y - 2} \right)^2} + {(z + 5)^2} = 25\) 

C. \({(x + 6)^2} + {y^2} + {(z + 8)^2} = 25\) 

D. \({(x + 1)^2} + {\left( {y - 2} \right)^2} + {(z + 5)^2} = 5\) 

* Đáp án

B

* Hướng dẫn giải

Ta có : \(A\left( {2;2; - 1} \right),B\left( { - 4;2; - 9} \right)\)\( \Rightarrow I\left( { - 1;2; - 5} \right)\) là trung điểm của \(AB\) và \(AB = \sqrt {{{\left( { - 4 - 2} \right)}^2} + {{\left( {2 - 2} \right)}^2} + {{\left( { - 9 + 1} \right)}^2}}  = 10\).

Mặt cầu đường kính \(AB\) có tâm \(I\left( { - 1;2; - 5} \right)\) và bán kính \(R = \dfrac{{AB}}{2} = \dfrac{{10}}{2} = 5\) nên có phương trình \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 5} \right)^2} = {5^2} = 25\).

Chọn B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 12 năm 2021-2022 Trường THPT Ngô Gia Tự

Số câu hỏi: 40

Copyright © 2021 HOCTAP247