Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi HK2 môn Toán 12 năm 2021-2022 Trường THPT Ngô Gia Tự Biết \(f(x)\) là hàm liên tục trên \(\mathbb{R}\) và \(\int\limits_0^{\dfrac{\pi...

Biết \(f(x)\) là hàm liên tục trên \(\mathbb{R}\) và \(\int\limits_0^{\dfrac{\pi }{2}} {f(x)dx = 4} \). Khi đó \(\int\limits_0^{\dfrac{\pi }{4}} {\left[ {f(2x) - {\mathop{\rm s}\n...

Câu hỏi :

Biết  \(f(x)\) là hàm liên tục trên \(\mathbb{R}\) và \(\int\limits_0^{\dfrac{\pi }{2}} {f(x)dx = 4} \). Khi đó \(\int\limits_0^{\dfrac{\pi }{4}} {\left[ {f(2x) - {\mathop{\rm s}\nolimits} {\rm{inx}}} \right]} dx\) bằng: 

A. \(2 + \dfrac{{\sqrt 2 }}{2}\) 

B. \(2 - \dfrac{{\sqrt 2 }}{2}\) 

C. \(3 - \dfrac{{\sqrt 2 }}{2}\) 

D. \(1 + \dfrac{{\sqrt 2 }}{2}\) 

* Đáp án

D

* Hướng dẫn giải

Ta có: \(\int\limits_0^{\dfrac{\pi }{4}} {\left[ {f(2x) - \sin x} \right]} dx = \int\limits_0^{\dfrac{\pi }{4}} {f\left( {2x} \right)} dx - \int\limits_0^{\dfrac{\pi }{4}} {\sin x} dx = I - J\)

Tính \(I = \int\limits_0^{\dfrac{\pi }{4}} {f\left( {2x} \right)dx} \).

Đặt \(t = 2x \Rightarrow dt = 2dx\)\( \Rightarrow I = \int\limits_0^{\dfrac{\pi }{2}} {f\left( t \right).\dfrac{{dt}}{2}}  = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {f\left( t \right)dt}  = \dfrac{1}{2}.4 = 2\).

Tính \(J = \int\limits_0^{\dfrac{\pi }{4}} {\sin x} dx =  - \left. {\cos x} \right|_0^{\dfrac{\pi }{4}} =  - \left( {\dfrac{{\sqrt 2 }}{2} - 1} \right) = 1 - \dfrac{{\sqrt 2 }}{2}\).

Vậy \(I - J = 2 - \left( {1 - \dfrac{{\sqrt 2 }}{2}} \right) = 1 + \dfrac{{\sqrt 2 }}{2}\) hay \(\int\limits_0^{\dfrac{\pi }{4}} {\left[ {f(2x) - \sin x} \right]} dx = 1 + \dfrac{{\sqrt 2 }}{2}\).

Chọn D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 12 năm 2021-2022 Trường THPT Ngô Gia Tự

Số câu hỏi: 40

Copyright © 2021 HOCTAP247