Thể tích của khối tròn xoay được sinh bởi hình phẳng giới hạn bởi đồ thị hai hàm số \(y = f\left( x \right),y = g\left( x \right)\) và hai đường thẳng \(x = a,x = b\) khi quay quan...

Câu hỏi :

Cho \(y = f\left( x \right),y = g\left( x \right)\) là những hàm số liên tục trên đoạn \(\left[ {a;b} \right]\) và \(f\left( x \right) > g\left( x \right) > 0,\,\forall x \in \left[ {a;b} \right]\). Thể tích của khối tròn xoay được sinh bởi hình phẳng giới hạn bởi đồ thị hai hàm số \(y = f\left( x \right),y = g\left( x \right)\) và hai đường thẳng \(x = a,x = b\) khi quay quanh trục hoành được xác định bởi công thức:

A. \(V = \pi \int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}dx}  - \pi \int\limits_a^b {{{\left[ {g\left( x \right)} \right]}^2}dx} \).     

B. \(V = \pi \int\limits_a^b {{{\left[ {f\left( x \right) - g\left( x \right)} \right]}^2}dx} \). 

C. \(V = \left| {\pi \int\limits_a^b {f\left( x \right)dx}  - \pi \int\limits_a^b {g\left( x \right)dx} } \right|\). 

D. \(V = \pi \int\limits_a^b {{{\left[ {g\left( x \right)} \right]}^2}dx}  - \pi \int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}dx} \).

* Đáp án

A

* Hướng dẫn giải

Thể tích cần tìm là:

\(V = \pi \int\limits_a^b {\left| {{{\left[ {f\left( x \right)} \right]}^2} - {{\left[ {g\left( x \right)} \right]}^2}} \right|dx}  = \pi \int\limits_a^b {\left( {{{\left[ {f\left( x \right)} \right]}^2} - {{\left[ {g\left( x \right)} \right]}^2}} \right)dx}  = \pi \int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}dx}  - \pi \int\limits_a^b {{{\left[ {g\left( x \right)} \right]}^2}dx} \)

(do \(f\left( x \right) > g\left( x \right) > 0,\,\forall x \in \left[ {a;b} \right] \Rightarrow {\left[ {f\left( x \right)} \right]^2} > {\left[ {g\left( x \right)} \right]^2},\,\forall x \in \left[ {a;b} \right]\))

Chọn: A

Copyright © 2021 HOCTAP247