Trong không gian \(Oxyz,\) cho hai điểm \(A\left( {7; - 2;2} \right)\) và \(B\left( {1;2;4} \right)\). Phương trình nào dưới đây là phương trình mặt cầu đường kính \(AB?\)

Câu hỏi :

Trong không gian \(Oxyz,\) cho hai điểm \(A\left( {7; - 2;2} \right)\) và \(B\left( {1;2;4} \right)\). Phương trình nào dưới đây là  phương trình mặt cầu đường kính \(AB?\) 

A. \({\left( {x - 4} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 2\sqrt {14} \) 

B. \({\left( {x - 4} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 14\) 

C. \({\left( {x - 4} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 56\) 

D. \({\left( {x - 7} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 2} \right)^2} = 14\) 

* Đáp án

B

* Hướng dẫn giải

Trung điểm \(I\) của \(AB\) có tọa độ \(\left\{ \begin{array}{l}{x_I} = \dfrac{{{x_A} + {x_B}}}{2} = \dfrac{{7 + 1}}{2} = 4\\{y_I} = \dfrac{{{y_A} + {y_B}}}{2} = \dfrac{{ - 2 + 2}}{2} = 0\\{z_I} = \dfrac{{{z_A} + {z_B}}}{2} = \dfrac{{2 + 4}}{2} = 3\end{array} \right.\)  suy ra \(I\left( {4;0;3} \right)\)

\(AB = \sqrt {{{\left( {1 - 7} \right)}^2} + {{\left( {2 + 2} \right)}^2} + {{\left( {4 - 2} \right)}^2}}  = 2\sqrt {14} \)

Mặt cầu đường kính \(AB\) nhận trung điểm \(I\left( {4;0;3} \right)\) của \(AB\) làm tâm và bán kính \(R = \dfrac{{AB}}{2} = \sqrt {14} \)

Phương trình mặt cầu là \({\left( {x - 4} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 14\) .

Chọn B

Copyright © 2021 HOCTAP247