A. \(x = \dfrac{5}{{14}}\)và \(y = - \dfrac{8}{7}\)
B. \(x = \dfrac{8}{7}\)và \(y = - \dfrac{5}{{14}}\)
C. \(x = - \dfrac{5}{{14}}\)và \(y = \dfrac{8}{7}\)
D. \(x = - \dfrac{5}{{14}}\)và \(y = - \dfrac{8}{7}\)
A. \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} } \)
B. \(\int\limits_a^b {k.f\left( x \right)dx = } k.\int\limits_a^b {f\left( x \right)dx} \)với \(k\) là hằng số
C. \(\int\limits_a^b {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}dx} = \dfrac{{\int\limits_a^b {f\left( x \right)dx} }}{{\int\limits_a^b {g\left( x \right)dx} }}\)
D. \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} \)
A. \(S = \int\limits_a^b {\left[ {g\left( x \right) - f\left( x \right)} \right]dx} \)
B. \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)
C. \(S = \left| {\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} } \right|\)
D. \(S = \int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} \)
A. \(\varphi = 30^\circ \)
B. \(\varphi = 45^\circ \)
C. \(\varphi = 90^\circ \)
D. \(\varphi = 60^\circ \)
A. \(I = \dfrac{{147}}{2}\)
B. \(I = \dfrac{{147}}{3}\)
C. \(I = - \dfrac{{147}}{2}\)
D. \(I = 147\)
A. \(\overrightarrow a = \left( {2; - 1;3} \right)\)
B. \(\overrightarrow b = \left( {2;1;3} \right)\)
C. \(\overrightarrow u = \left( {3;1; - 5} \right)\)
D. \(\overrightarrow q = \left( { - 3;1;5} \right)\)
A. \(K = 3\)
B. \(K = 33\)
C. \(K = 4\)
D. \(K = 14\)
A. \(\int {f\left( {\sin 2x} \right)\cos 2xdx} = 2{\sin ^2}x + 6\sin x + C\)
B. \(\int {f\left( {\sin 2x} \right)\cos 2xdx} = 2{\sin ^2}2x + 6\sin 2x + C\)
C. \(\int {f\left( {\sin 2x} \right)\cos 2xdx} = \dfrac{1}{2}{\sin ^2}2x + \dfrac{3}{2}\sin 2x + C\)
D. \(\int {f\left( {\sin 2x} \right)\cos 2xdx} = {\sin ^2}2x + 3\sin 2x + C\)
A. \(z = - 2 + 3i\)
B. \(z = 3 + 2i\)
C. \(z = 2 - 3i\)
D. \(z = 3 - 2i\)
A. \(\overline z = - \dfrac{9}{{29}} + \dfrac{{50}}{{29}}i\)
B. \(\overline z = - \dfrac{9}{{29}} - \dfrac{{50}}{{29}}i\)
C. \(\overline z = \dfrac{9}{{29}} - \dfrac{{50}}{{29}}i\)
D. \(\overline z = \dfrac{9}{{29}} + \dfrac{{50}}{{29}}i\)
A. \(P = \sqrt 3 \)
B. \(P = 5\sqrt 3 \)
C. \(P = 3\sqrt 3 \)
D. \(P = 7\sqrt 3 \)
A. \(1 + 3i\)
B. \(1 - 3i\)
C. \( - 1 + 3i\)
D. \( - 1 - 3i\)
A. \(F\left( 2 \right) = \ln \dfrac{7}{3}\)
B. \(F\left( 2 \right) = - \dfrac{1}{2}\ln 3\)
C. \(F\left( 2 \right) = \dfrac{1}{2}\ln \dfrac{7}{3}\)
D. \(F\left( 2 \right) = \ln 21\)
A. \(10x + 6y + 15z - 90 = 0\)
B. \(10x + 6y + 15z - 60 = 0\)
C. \(3x + 5y + 2z - 60 = 0\)
D. \(\dfrac{x}{3} + \dfrac{y}{5} + \dfrac{z}{2} = 1\)
A. \(\int\limits_a^b {f\left( x \right)dx} = F\left( a \right) - F\left( b \right)\)
B. \(\int\limits_a^b {f\left( x \right)dx} = F\left( b \right) - F\left( a \right)\)
C. \(\int\limits_a^b {f\left( x \right)dx} = F\left( b \right) + F\left( a \right)\)
D. \(\int\limits_a^b {f\left( x \right)dx} = F'\left( b \right) - F'\left( a \right)\)
A. \(a = - 2,b = \sqrt 5 \)
B. \(a = \sqrt 5 ,b = 2\)
C. \(a = \sqrt 5 ,b = - 2\)
D. \(a = \sqrt 5 ,b = - 2i\)
A. \(S = \int\limits_{ - 3}^0 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} \)
B. \(S = \int\limits_{ - 3}^0 {\left[ {g\left( x \right) - f\left( x \right)} \right]dx} \)
C. \(S = \int\limits_{ - 3}^0 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \)
D. \(S = \int\limits_{ - 3}^1 {{{\left[ {f\left( x \right) - g\left( x \right)} \right]}^2}dx} \)
A. \(V = {\pi ^2}\int\limits_a^b {f\left( x \right)dx} \)
B. \(V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \)
C. \(V = {\left( {\pi \int\limits_a^b {f\left( x \right)dx} } \right)^2}\)
D. \(V = 2\pi \int\limits_a^b {{f^2}\left( x \right)dx} \)
A. \(F\left( {\dfrac{\pi }{6}} \right) = \dfrac{5}{4}\)
B. \(F\left( {\dfrac{\pi }{6}} \right) = - \dfrac{{\sqrt 3 }}{4} - 1\)
C. \(F\left( {\dfrac{\pi }{6}} \right) = \sqrt 3 - 1\)
D. \(F\left( {\dfrac{\pi }{6}} \right) = - \dfrac{5}{4}\)
A. Đường tròn tâm \(O\left( {0;0} \right)\) , bán kính \(R = \dfrac{7}{2}.\)
B. Đường tròn tâm \(O\left( {0;0} \right)\), bán kính \(R = 7\)
C. Đường tròn tâm \(O\left( {0;0} \right),\) bán kính \(R = 49\)
D. Đường tròn tâm \(O\left( {0;0} \right)\), bán kính \(R = \sqrt 7 \)
A. \(A\left( {3;9;0} \right)\)và \(B\left( {0;0;15} \right)\)
B. \(A\left( {6;15;0} \right)\)và \(B\left( {0;0;24} \right)\)
C. \(A\left( {7;16;0} \right)\)và \(B\left( {0;0;25} \right)\)
D. \(A\left( {5;14;0} \right)\)và \(B\left( {0;0;23} \right)\)
A. \(M\left( { - 2;11} \right)\)
B. \(M\left( {11;2} \right)\)
C. \(M\left( {11; - 2} \right)\)
D. \(M\left( { - 2; - 11} \right)\)
A. \(\overrightarrow a = \left( {0;3; - 5} \right)\)
B. \(\overrightarrow a = \left( {3;0;5} \right)\)
C. \(\overrightarrow a = \left( {3; - 5;0} \right)\)
D. \(\overrightarrow a = \left( {3;0; - 5} \right)\)
A. \(\int {{3^{2018x}}dx} = \dfrac{{{3^{2018x}}}}{{\ln 3}} + C\)
B. \(\int {{3^{2018x}}dx} = \dfrac{{{3^{2018x}}}}{{\ln 2018}} + C\)
C. \(\int {{3^{2018x}}dx} = \dfrac{{{3^{2018x}}}}{{2018\ln 3}} + C\)
D. \(\int {{3^{2018x}}dx} = \dfrac{{{3^{2018x}}}}{{2019}} + C\)
A. \(\left| z \right| = 1\)
B. \(\left| z \right| = 4\)
C. \(\left| z \right| = 2\)
D. \(\left| z \right| = 3\)
A. \(\int {f'\left( x \right)\ln xdx} = - \dfrac{{2\ln x}}{{{x^2}}} + \dfrac{1}{{{x^2}}} + C\)
B. \(\int {f'\left( x \right)\ln xdx} = \dfrac{{2\ln x}}{{{x^2}}} + \dfrac{1}{{{x^2}}} + C\)
C. \(\int {f'\left( x \right)\ln xdx} = \dfrac{{2\ln x}}{{{x^2}}} - \dfrac{1}{{{x^2}}} + C\)
D. \(\int {f'\left( x \right)\ln xdx} = - \dfrac{{2\ln x}}{{{x^2}}} - \dfrac{1}{{{x^2}}} + C\)
A. \(S = \dfrac{\pi }{2} - \dfrac{{\sqrt 2 }}{2}\)
B. \(S = \dfrac{\pi }{4} + \dfrac{7}{{10}}\)
C. \(S = \dfrac{\pi }{2} + \dfrac{{\sqrt 2 }}{2}\)
D. \(S = \dfrac{\pi }{4} + \dfrac{{\sqrt 2 }}{2}\)
A. \(Q\left( {\dfrac{1}{2}; - \dfrac{7}{2}} \right)\)
B. \(N\left( {\dfrac{1}{2};\dfrac{7}{2}} \right)\)
C. \(P\left( { - \dfrac{1}{2};\dfrac{7}{2}} \right)\)
D. \(M\left( { - \dfrac{1}{2}; - \dfrac{7}{2}} \right)\)
A. \(Q = 120\)
B. \(Q = 15\)
C. \(Q = - 120\)
D. \(Q = 40\)
A. \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} - \int {g\left( x \right)dx} \)
B. \(\int {f\left( x \right).g\left( x \right)dx} = \int {f\left( x \right)dx} .\int {g\left( x \right)dx} \)
C. \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \) với \(k\) là hằng số khác \(0\)
D. \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} + \int {g\left( x \right)dx} \)
A. \(i\sqrt 5 \)
B. \(i\sqrt { - 5} \)
C. \(\sqrt {5i} \)
D. \( - \sqrt {5i} \)
A. \(V = \dfrac{{98}}{3}\)
B. \(V = 8\pi \)
C. \(V = \dfrac{{98\pi }}{3}\)
D. \(V = \dfrac{{98{\pi ^2}}}{3}\)
A. \(b = {2^{1009}}\)
B. \(b = {2^{2017}}\)
C. \(b = - {2^{2018}}\)
D. \(b = {2^{2018}}\)
A. \(2x - 2y + 5z + 15 = 0\)
B. \(2x - 2y + 5z + 7 = 0\)
C. \(2x + 3y - z + 7 = 0\)
D. \(2x + 3y - z + 15 = 0\)
A. \({\left( {x - 4} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 2\sqrt {14} \)
B. \({\left( {x - 4} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 14\)
C. \({\left( {x - 4} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 56\)
D. \({\left( {x - 7} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 2} \right)^2} = 14\)
A. \(P = 37\)
B. \(P = 4\)
C. \(P = 29\)
D. \(P = 8\)
A. \(x - 4y + 3z + 3 = 0\)
B. \(x + 3y + 3z - 3 = 0\)
C. \(3x + y + 3z - 15 = 0\)
D. \(x + 3y + 3z - 15 = 0\)
A. \(\overrightarrow u = \left( {5;3; - 2} \right)\)
B. \(\overrightarrow n = \left( {5;3;2} \right)\)
C. \(\overrightarrow p = \left( {5; - 3; - 2} \right)\)
D. \(\overrightarrow q = \left( { - 5; - 3;1} \right)\)
A. \(4x + 2y + 3z - 11 = 0\)
B. \(x - 2y + z - 11 = 0\)
C. \(4x + 2y + 3z - 3 = 0\)
D. \(x - 2y + z - 3 = 0\)
A. \(\dfrac{x}{2} + \dfrac{y}{5} + \dfrac{z}{3} = - 1\)
B. \(\dfrac{x}{2} + \dfrac{y}{5} + \dfrac{z}{3} = 1\)
C. \(\dfrac{x}{2} + \dfrac{y}{3} + \dfrac{z}{5} = 1\)
D. \(\dfrac{x}{2} + \dfrac{y}{3} + \dfrac{z}{5} = 0\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247