Hỏi có tất cả bao nhiêu giá trị m nguyên trên đoạn [-2017;2017] để

Câu hỏi :

Hỏi có tất cả bao nhiêu giá trị m nguyên trên đoạn [-2017;2017] để phương trình x2-1log2x2+1-m2(x2-1)logx2+1+m+4=0 

A. 4017.

B. 4028.

C. 4012.

D. 4003.

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Điều kiện 

Phương trình đã cho tương đương với:

Đặt t=x21, theo bài ra ta có 1x1<x231x12<x229t1;9

Xét hàm số f(t)=2-(t-1).log(t+1) trên đoạn 1;9.

Ta có

Hàm số f(t) đồng biến trên đoạn 1;9. Khi đó f(1)f(t)9 hay 1f(t)4.

Đặt u=2(x2-1).log(x2+1)u0;4. Khi đó phương trình * trở thành u2-2m.u+2m+8=01.

Nhận thấy u=1 không phải là nghiệm của phương trình 1. Với u1 thì phương trình 1 tương đương với u2+8=2m(u-1)2m=u2+8u-12

Xét hàm số gu=u2+8u-1 trên đoạn 0;4\1.

Ta có g'u=u2-2u-8u-12; g'(u)=0[u=-2u=4. Mà u0;4\1 nên u=4.

Mặt khác, có g(0)=-8g(4)=8; limx1-g(u)=-limx1+g(u)==.

Bảng biến thiên:

Yêu cầu bài toán Phương trình 2 có nghiệm duy nhất trên đoạn  0;4\1.

Suy ra

Mặt khác mm-2017;2017 nên suy ra

Vậy có tất cả 2017-4+1+-4+2017+1=4028 giá trị m nguyên thỏa mãn bài toán.

Copyright © 2021 HOCTAP247