A. \(\frac{{12}}{5}a\)
B. \(2a\)
C. \(\frac{3}{2}a\)
D. \(\frac{9}{4}a\)
A
Gọi K là trung điểm của AB, \(AC \cap BD = O\). Góc giữa mặt bên và đáy là góc \(\widehat {SKO}\)
Gọi M là trung điểm của SA
Trong tam giác SOA dựng đường thẳng trung trực IM của SA, \(I \in SO\)
giả sử AB = b, suy ra \(OK = \frac{b}{2},OA = \frac{{b\sqrt 2 }}{2}\)
Xét \(\Delta SOK\), ta có
\(\tan {60^0} = \frac{{SO}}{{OK}} \Rightarrow SO = OK.\tan {60^0} = \frac{{b\sqrt 3 }}{2}\)
Ta có \(\Delta SMI \sim \Delta SOA\left( {g - g} \right)\) nên \(\frac{{SI}}{{SA}} = \frac{{SM}}{{SO}}\)
\(SI = \frac{{SM.SA}}{{SO}} = \frac{{\frac{1}{2}S{A^2}}}{{SO}} = \frac{1}{2}\frac{{\frac{5}{4}{b^2}}}{{\frac{{b\sqrt 3 }}{2}}} = \frac{{5\sqrt 3 }}{{12}}b\)
Theo giả thiết \(\frac{{5\sqrt 3 }}{{12}}b = a\sqrt 3 \Rightarrow b = \frac{{12}}{5}a\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247