Biết rằng phương trình \({{\rm{e}}^x} - {{\rm{e}}^{ - x}} = 2\cos ax\) (\(a\) là tham số) có 3 nghiệm thực phân biệt.

Câu hỏi :

Biết rằng phương trình \({{\rm{e}}^x} - {{\rm{e}}^{ - x}} = 2\cos ax\) (\(a\) là tham số) có 3 nghiệm thực phân biệt. Hỏi phương trình \({{\rm{e}}^x} + {{\rm{e}}^{ - x}} = 2\cos ax + 4\) có bao nhiêu nghiệm thực phân biệt ?

A. 5

B. 10

C. 6

D. 11

* Đáp án

C

* Hướng dẫn giải

Ta có: 

\(\begin{array}{l}
{e^x} + {e^{ - x}} = {\left( {{e^{\frac{x}{2}}} - {e^{\frac{{ - x}}{2}}}} \right)^2} + 2 = 2\cos \left( {{\rm{ax}}} \right) + 4 \Leftrightarrow {\left( {{e^{\frac{x}{2}}} - {e^{\frac{{ - x}}{2}}}} \right)^2} = 2\cos \left( {{\rm{ax}}} \right) + 2 = 4{\cos ^2}\left( {a.\frac{x}{2}} \right)\\
 \Leftrightarrow \left[ \begin{array}{l}
{e^{\frac{x}{2}}} - {e^{\frac{{ - x}}{2}}} = 2\cos \left( {a.\frac{x}{2}} \right) (1) \\
{e^{\frac{x}{2}}} - {e^{\frac{{ - x}}{2}}} =  - 2\cos \left( {a.\frac{x}{2}} \right) (2)
\end{array} \right.
\end{array}\)

Phương trình (1) có 3 nghiệm phân biệt, suy ra phương trình (2) cũng có 3 nghiệm phân biệt và không có nghiệm nào trùng với nghiệm của phương trình (!)

Vậy phương trình đã cho có 6 nghiệm thực phân biệt 

Copyright © 2021 HOCTAP247