Cho hàm số \(y = \frac{1}{4}{x^4} - 3{x^2}\) có đồ thị (C).

Câu hỏi :

Cho hàm số \(y = \frac{1}{4}{x^4} - 3{x^2}\) có đồ thị (C). Có bao nhiêu điểm A thuộc (C) sao cho tiếp tuyến của (C) tại A cắt (C) tại hai điểm phân biệt \(M\left( {{x_1};{y_1}} \right),N\left( {{x_2};{y_2}} \right)\) (M, N khác A) thỏa mãn \({y_1} - {y_2} = 5\left( {{x_1} - {x_2}} \right).\)

A. 1

B. 2

C. 0

D. 3

* Đáp án

B

* Hướng dẫn giải

\(y’=x^3-6x\)

Gọi \(A\left( {{x_0};\frac{1}{4}{x_0}^4 - 3{x_0}^2} \right)\) là tọa độ tiếp điểm của tiếp tuyến tại A. Phương trình tiếp tuyến tại A là đường thẳng (d) có phương trình: \(y = \left( {x_0^3 - 6{x_0}} \right)\left( {x - {x_0}} \right) + \frac{1}{4}x_0^4 - 3x_0^2\) 

Phương trình hoành độ giao điểm của (d) và (C) là:

\(\begin{array}{l}
\left( {x_0^3 - 6{x_0}} \right)\left( {x - {x_0}} \right) + \frac{1}{4}x_0^4 - 3x_0^2 = \frac{1}{4}{x^4} - 3{x^2}\\
 \Leftrightarrow {\left( {x - {x_0}} \right)^2}\left( {{x^2} + 2{x_0}x + 3x_0^2 - 12} \right) = 0\\
 \Leftrightarrow \left[ \begin{array}{l}
x - {x_0} = 0\\
{x^2} + 2{x_0}x + 3{x_0} - 12 = 0\left( 2 \right)
\end{array} \right.
\end{array}\) 

(d) cắt (C) tại 2 điểm phân biệt khác A khi và chỉ khi phương trình (2) có 2 nghiệm phân biệt khác \(x_0\)

\(\left[ \begin{array}{l}
{x_0} \ne  \pm \sqrt 2 \\
 - \sqrt 6  < {x_0} < \sqrt 6 
\end{array} \right.\left( 3 \right)\) 

Khi đó, phương trình (2) có 2 nghiệm phân biệt \(x_1, x_2\) và (d) cắt (C) tại 2 điểm phân biệt trong đó:

\(\begin{array}{l}
{y_1} = \left( {x_0^3 - 6{x_0}} \right)\left( {{x_1} - {x_0}} \right) + \frac{1}{4}x_0^4 - 3x_0^3;{y_2} = \left( {x_0^3 - 6{x_0}} \right)\left( {{x_2} - {x_0}} \right) + \frac{1}{4}x_0^4 - 3x_0^3\\
 \Rightarrow {y_1} - {y_2} = \left( {x_0^3 - 6{x_0}} \right)\left( {{x_1} - {x_2}} \right)
\end{array}\) 

Từ giả thiết ta suy ra:

\(\begin{array}{l}
\left( {x_0^3 - 6{x_0}} \right)\left( {{x_1} - {x_2}} \right) = 5\left( {{x_1} - {x_2}} \right) \Leftrightarrow x_0^3 - 6{x_0} = 5\left( {{x_1} \ne {x_2}} \right)\\
 \Leftrightarrow \left[ \begin{array}{l}
{x_0} =  - 1\\
{x_0} = \frac{{ - 1 - \sqrt {21} }}{2}\\
{x_0} = \frac{{ - 1 + \sqrt {21} }}{2}
\end{array} \right.
\end{array}\) 

Kết hợp với điều kiện (3) có 2 giá trị \(x_0\) thỏa mãn yêu cầu bài toán là: \(\left[ \begin{array}{l}
{x_0} =  - 1\\
{x_0} = \frac{{ - 1 + \sqrt {21} }}{2}
\end{array} \right.\) 

Copyright © 2021 HOCTAP247