Giải phương trình \(8.\cos 2x.\sin 2x.\cos 4x =  - \sqrt 2 .\)

Câu hỏi :

Giải phương trình \(8.\cos 2x.\sin 2x.\cos 4x =  - \sqrt 2 .\)

A. \(\left[ \begin{array}{l}
x = \frac{\pi }{{32}} + k\frac{\pi }{4}\\
x = \frac{{3\pi }}{{32}} + k\frac{\pi }{4}
\end{array} \right.{\rm{ }}\left( {k \in Z} \right).\)

B. \(\left[ \begin{array}{l}
x = \frac{\pi }{8} + k\frac{\pi }{8}\\
x = \frac{{3\pi }}{8} + k\frac{\pi }{8}
\end{array} \right.{\rm{ }}\left( {k \in Z} \right).\)

C. \(\left[ \begin{array}{l}
x =  - \frac{\pi }{{32}} + k\frac{\pi }{4}\\
x = \frac{{5\pi }}{{32}} + k\frac{\pi }{4}
\end{array} \right.{\rm{ }}\left( {k \in Z} \right).\)

D. \(\left[ \begin{array}{l}
x = \frac{\pi }{{16}} + k\frac{\pi }{8}\\
x = \frac{{3\pi }}{{16}} + k\frac{\pi }{8}
\end{array} \right.{\rm{ }}\left( {k \in Z} \right).\)

* Đáp án

C

* Hướng dẫn giải

\(\begin{array}{l}
8.\cos 2x.\sin 2x.\cos 4x =  - \sqrt 2  \Leftrightarrow 4.\sin 4x.\cos 4x =  - \sqrt 2  \Leftrightarrow 2.\sin 8x =  - \sqrt 2 \\
 \Leftrightarrow \sin 8x =  - \frac{{\sqrt 2 }}{2} \Leftrightarrow \left[ \begin{array}{l}
8x =  - \frac{\pi }{4} + k2\pi \\
8x = \frac{{5\pi }}{4} + k2\pi 
\end{array} \right.\left( {k \in Z} \right) \Leftrightarrow \left[ \begin{array}{l}
x =  - \frac{\pi }{{32}} + k\frac{\pi }{4}\\
x = \frac{{5\pi }}{{32}} + k\frac{\pi }{4}
\end{array} \right.\left( {k \in Z} \right)
\end{array}\)

Copyright © 2021 HOCTAP247