Trong một lớp có ((2n+3)) học sinh gồm An, Bình, Chi cùng (2n) học sinh khác Khi xếp tùy ý các học sinh này vào d

Câu hỏi :

Trong một lớp có \((2n+3)\) học sinh gồm An, Bình, Chi cùng \(2n\) học sinh khác Khi xếp tùy ý các học sinh này vào dãy ghế được đánh số từ 1 đến \(\left( {2n + 3} \right)\), mỗi học sinh ngồi một ghế thì xác xuất để số ghế của An, Bình, Chi theo thứ tự lập thành cấp số cộng là \(\frac{{17}}{{1155}}\). Số học sinh của lớp là:

A. 27

B. 25

C. 45

D. 35

* Đáp án

D

* Hướng dẫn giải

Số cách xếp học sinh vào ghế là (2n+3)!

Nhận xét rằng nếu số tự nhiên a, b, c lập thành một cấp số cộng thì a+c=2b nên a+c là một số chẵn. Như vậy a, c phải cùng chẵn hoặc cùng lẻ.

Từ 1 đến 2n+3 có n+1 số chẵn và n+2 số lẻ

Muốn có một cách xếp học sinh thỏa số ghế của An, Bình, Chi theo thứ tự lập thành một cấp số cộng ta sẽ tiến hành như sau:

Bước 1: Chọn 2 ghế có số thứ tự cùng chẵn hoặc cùng lẻ rồi xếp An và Chi vào, sau đó xếp Bình vào ghế chính giữa. Bước này có \(A_{n + 1}^2 + A_{n + 2}^2\) cách

Bước 2: Xếp chỗ cho 2n học sinh còn lại. Bước này có (2n)! cách.

Như vậy số cách xếp thỏa yêu cầu là\(\left( {A_{n + 1}^2 + A_{n + 2}^2} \right).\left( {2n} \right)!\) 

Ta có phương trình

\(\begin{array}{l}
\frac{{\left( {A_{n + 1}^2 + A_{n + 2}^2} \right).\left( {2n} \right)!}}{{\left( {2n + 3} \right)!}} = \frac{{17}}{{1155}} \Leftrightarrow \frac{{n\left( {n + 1} \right) + \left( {n + 1} \right)\left( {n + 2} \right)}}{{\left( {2n + 1} \right)\left( {2n + 2} \right)\left( {2n + 3} \right)}} = \frac{{17}}{{1155}}\\
 \Leftrightarrow 68{n^2} - 1029n - 1104 = 0\\
 \Leftrightarrow \left[ \begin{array}{l}
n = 16\\
n =  - \frac{{69}}{{68}}\left( l \right)
\end{array} \right.
\end{array}\) 

Vậy số học sinh của lớp là 35

Copyright © 2021 HOCTAP247